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THE YAMABE PROBLEM ON
MANIFOLDS WITH BOUNDARY

JOSE F. ESCOBAR

A natural question in differential geometry is whether a given compact
Riemannian manifold with boundary is necessarily conformally equiva-
lent to one of constant scalar curvature, where the boundary is minimal.
When the boundary is empty this is called the Yamabe Problem—so-called
because, in 1960, Yamabe claimed to have solved this problem. In 1968,
N. Trudinger found a mistake in Yamabe’s paper [16] and corrected Yam-
abe’s proof for the case in which the scalar curvature is nonpositive. In
1976, Aubin [1] showed that, if dim M > 6 and M is not conformally
flat, then M can be conformally changed to constant scalar curvature. In
1984, Richard Schoen [10] solved the Yamabe problem in the remaining
cases.

In this paper, we study the problem in the context of manifolds with
boundary and give an affirmative solution to the question formulated above
in almost every case. In fact, we show that any compact Riemannian
manifold with boundary and dimension 3, 4, or 5 is conformally equivalent
to one of constant scalar curvature, where the boundary is minimal. When
n >3 and there exists a nonumbilic point at 9/, the boundary of M,
we show that the problem above has an affirmative answer. The remaining
case is when # > 6 and 8M is umbilic. Under these conditions we show
that the problem above is solvable in the affirmative if either M is locally
conformally flat, or the Weyl tensor does not vanish identically on the
boundary.

The only case we do not consider in this paper is when # > 6, M is
not locally conformally flat, 3 is umbilic, and the Weyl tensor vanishes
identically on AM . As a consequence of the above results we have the
following theorem.

Theorem. Any bounded domain in a Euclidean m-space R", with
smooth boundary and n > 3, admits a metric conformal to the Euclidean
metric having constant scalar curvature and minimal boundary.
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To study the problem above is equivalent to studying the existence of a
smooth positive solution on a Riemannian manifold (M", g) with bound-
ary and dimension » > 3 to the equations

Au—-LZZ R u+Cd™ PP =0 on M,
() ou 5 i

al’; n; hu—O ondM,
where R < 1s the scalar curvature of M, A < is the mean curvature of M ,
1 is the outward normal vector with respect to the metric g, and C is
a constant whose sign is uniquely determined by the conformal structure.
If g= u! ("_2)g , then the metric £ has constant scalar curvature and the
boundary is minimal. We denote the linear part of the operator in (1) by
L and the boundary conditions by B, thus

Lu=Au- n-2 R u onM,
4( - 1)
(2) . du 2 ,
Bu = 8_11 —Thgu on M.

The operator L on M together with the operator B on 8M is con-
formally invariant, in that it changes by a multiplicative factor when the
metric of M is multiplied by a positive function. Observe that if « is a
solution of (1), then u is a critical point for the Sobolev quotient Q g(q))
for functions ¢ on (M, g) which is given by

Sy (v + P 1)Rg(p 5dv + ”22 fang(p do

where dv and do are the Riemannian measure on M and the induced
Riemannian measure on M , respectively, with respect to the metric g.
The Sobolev quotient Q(M) is then defined by

Q(M) =inf{Q,(¢):9 € C'(M), p # 0}.

The number Q(M) depends only on the conformal class of g. By choos-
ing functions ¢ which are supported near a point of 8 M , it follows easily
that

4) QM) < Q(S7)

for any n-dimensional manifold M . Here S: denotes the upper standard
hemisphere.

A similar argument to the one given by Aubin in [1] shows that if
(M) < Q(SZ) then there exists a minimum for Q g(go) over the functions

3)  Q,p) =

>
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p e H 1(M }. It was proved by Cherrier [4] that this function is smooth.
This minimizing function then becomes a positive solution of (1) on M .

Since Q(SZ) is positive, equality in (4) does not occur if Q(M) < 0.
From now on we assume that Q(M) > 0,

In order to prove that Q(M) < Q(S:) for a manifold M conformally
different from Sf_, we only need to exhibit a function ¢ on M with
Qg((p) < Q(SZ) . To do this, when # > 4, we distinguish two cases:
The first case is when there exists a nonumbilic point on the boundary.
The second case is when there is no nonumbilic point on 8M , that is
1o say that every point is umbilic. In the first case we exploit the local
geometry of a nonumbilic point. A local test function is enough to prove
the inequality for the case # > 4 and a global one for the case » =4 . Our
correction term, in this case, comes from the trace free part of the second
fundamental form which at a nonumbilic point has positive and negative
eigenvalues, and if #n > 4 could have zero eigenvalues (at an umbilic point
all eigenvalues are zero). To distinguish the positive, the negative, and
the zero eigenvalues, we introduce the idea of breaking the symmetry by
using a nonsymmetric function. This idea is motivated by the translation-
invariance of the extremals on ]R{: . In the second case, that is, when M
is umbilic and » > 4, the proof is parallel to the one given by Aubin [1] and
Schoen [10] in the Yamabe problem on closed manifolds. To deal with this
case we prove a version of the conformal normal coordinates introduced
by Lee and Parker [8] for a point on the boundary. This simplifies the local
analysis. When M is not locally conformally flat and » > 6, a local test
function is enough to prove strict inequality in (4) provided that the Weyl
tensor does not vanish on O M . We use the same correction term as in
Aubin [1] which is, in this case, the norm of the Weyl tensor. When M is
locally conformally flat (and & M is umbilic), we use the Green’s functions
method introduced by R. Schoen in [10]. We study the behavior of the
positive Green’s function G for the conformal Laplacian L with respect
to the boundary condition B near a boundary point 0. The existence of
G is guaranteed by the fact that Q(M) > 0. For a metric within the
conformal class of g and under suitable coordinates near 0, the function
G has an expansion

G(x) = |x|”" + 4 + O(|x)).

The sign of the constant term A in this expansion is then the crucial
ingredient. If A is positive then one can find a function ¢ which is
a small multiple of G outside a neighborhood of 0 and which satisfies
Op) < Q(Sf_) . In the Appendix we prove a version of the Positive Mass
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Theorem of Schoen and Yau for manifolds with boundary. Our Theorem
says: 4> 0 and 4 =0 only if M is conformally equivalent to S: . The

metric g = G*n=2) g on M — {0} is scalar flat, dM is totally geodesic
(because it is minimal and umbilic) and asymptotically Euclidean, and

— 2—n.,4/(n=2 1—
g, =+ Ay Y Ps 1oy,

where y = x/ |x]2 . The end of the manifold M — {0} is diffeomorphic to
the complement of a ball centered at the origin in the half n-dimensional
Euclidean space. Thus we have Q(M) < Q(S’) provided that M islocally
conformally flat, &M is umbilic, and M is not conformally equivalent
to 57 . When M is umbilic and n = 3 or 4 we prove that the Positive
Mass Theorem holds for a suitable metric within the conformal class of
g and hence we have strict inequality in (4) in these cases. When n = 5
and &M is umbilic we treat this case similar to Schoen [10], using a per-
turbation argument. We discuss the Positive Mass Theorem for manifolds
with boundary in the Appendix of this paper.

When n = 3 we first prove that equality in (4) does not hold if M is not
conformally equivalent to S: and has an umbilic point at the boundary.
To prove the inequality we show that the Positive Mass Theorem holds
for these manifolds. The general case (no umbilic points at the boundary)
follows by approximating our manifold by a sequence of manifolds having
one umbilic point and not conformally equivalent to Sf: . One proves then
that strict inequality in (4) is preserved upon passage to the limit provided
M has a nonumbilic point at the boundary.

An important case is when M is a bounded domain Q in R", with
n > 3. Since S:'_ is conformally diffeomorphic to the ball B, our result
reads as Q(Q) < Q(B) and equality holds if and only if Q is the ball. We
think of Q(Q) as measuring how far Q is from being a ball. It will be
interesting to study the relation between Q(QQ) and the dilation quotients
defined in the study of quasi-conformal maps.

In a forthcoming paper, we will show that, under the same hypothe-
ses as in Theorem 6.1, a compact Riemannian manifold with boundary
is conformally equivalent to one of constant scalar curvature, where the
boundary has constant mean curvature. Also, we will study the case of
prescribing the scalar curvature and the mean curvature of the boundary.

The author thanks Professor Richard Schoen, whose encouragement and
interest in the preliminaries of this work were essential to its completion.
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1. Preliminaries: Conformal invariants

In this section, we assume that (M", g) is a compact Riemannian
manifold with boundary and dimension # > 3. If g = e g is a metric
conformal to g, one can compute the components of the curvature tensor
R of g in terms of those of g. It is well known that the transformation
law for the Ricci curvature is

(L) R,=R,~(n-2f;+(n-2ff,— Af +(n-2)V)g,.
Therefore
(1.2) R=e(R-2(n-1DAf - (n- Dn -2V

One can compute the components of the second fundamental form 7 in
terms of the second fundamental form of g. The transformation law is

7 s 9 f
(1.3) hijze hij+3_7)(e )g,'j>
where a% is the normal derivative with respect to the outward normal #.
Hence
= i
(1.4) h=e (h+8r;f)'

The conformal Laplacian is the operator L with the boundary conditions
B defined in (2). It is a conformally invariant operator. More precisely,
if g= utn= 2)g is a metric conformal to g, and L and - B are similarly
defined with respect to the metric g, then computing A and using the
transformation laws for the scalar curvature and the mean curvature, one
find that

~(n+2)/(n-2)

(1.5) L 'p) = L(p) on M
and
(1.6) B o) =u""""B(p) onoM.

From the transformation laws (1.5) and (1.6) it is easy to check the fol-
lowing

Proposition 1.1. Consider the metric g = u g on M, where u >
0 is any smooth function on M (= closure of M ) Then for any function
@€ C (M) we have

4/(n-2)

Q,(9) = Q,(u'p).
Hence Q(M, 8)=0Q(M, g).
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Proof. Observe that dv = ¥”/" P dy and d5 = *" V" V4o . 1t
follows immediately that

(1.7) / |¢|2n/(n—2) dv =/ lu—l(p|2n/(n—2)d6.
M M

From (1.5) and (1.6) it is easy to see that
—/ L ((p)(pd'u+/ B (p)pdo = —/ L~(u_1(p)u_1(pd1~1
Mm ¢ om ° M %

+ Bg(u—l(p)u_l(p do.
oM

Integrating this equality by parts we get

2 n—2 2 n—2 2
/M (lv¢lg+ng¢ )dU+T 3th¢ do

- . n-2 - ~
(1.8) =/M <|V(u 1(p)|§;+ ng(u 1(p)2>a"u

n_
+

7 Lo hfgv(u_l(p)2 do.

Using the last equality and (1.7) we have Q,(¢) = ng(u_l(p). The last
equality in Proposition 1.1 then follows from the fact that the set C* (M)
is dense in C'(3) in the H, -norm.

Definition. A point is umbilic if the tensor 7, ;= h; ; —hg; ; vanishes at
the point, where #; ; are the coefficients of the second fundamental form
and # is the mean curvature. '

Another conformal invariant is the set of umbilic points of the bound-
ary. More precisely, we have

Proposition 1.2. Let p € M be an umbilic point with respect to the
metric g. If g = uzg is a metric conformal to g, then p is an umbilic
point with respect to the metric g .

Proof. From the transformation law (1.3) we have

a—ug.. and h=u 'h+ u_z%.

h..:uhij'f'a’7 i an

)

Therefore

~ ~ o du ou
T, = hij - hgij = uhij + 5,;&'1 - (uh + 5‘,;)&7 = u(hij ~ hgij) = uT,-j.

Hence T;; = uT;;. From this identity the proposition follows.
Another important conformal invariant, as in the case of closed mani-
folds (see [7]), is the sign of the first eigenvalue for the conformal Laplacian

with respect to the boundary conditions as in (2).
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Proposition 1.3. If ¢ = u 4 n= g is a conformal metric to g, then
sign(4, (L)) = sign(4,(L)) or 1,(L) = A, (L) =0.

Proof. Let f and f denote the first eigenfunctions for L and L
respectively. From the variational characterization of the first eigenvalue
it follows that

ll/Mfzdv=A1<|Vf|2+Z%:%ij2> v ”;2 athzda.

Using equality (1.8) we obtain

/1 / f d'v_/ Vs +—%—_:2T)1~Q(u_1f)2d1~;
h( "N dG
>7 / f) 47,

Similarly, 11 Iy f~2 dv >4, f M(uf)zdv . Since f, f, u are positive func-
tions, the conclusion follows.

A consequence of Proposition 1.3 is the following result.

Lemma 1.1. If (M", g) is a compact Riemannian manifold with bound-
ary and n > 3, there exists a conformal metric to g whose scalar curvature
does not change sign and the boundary is minimal. The sign is uniquely de-
termined by the conformal structure, and so there are three mutually exclu-
sive possibilities: M admits a conformal metric of (i) positive, (ii) negative,
or (iii) identically zero scalar curvature and the boundary is minimal.

Proof. The three possibilities are distinguished by the sign of the first
eigenvalue of L with respect to the boundary conditions B. If f; is the
first eigenfunction, it is well known that f; > 0 on M. The boundary

point lemma implies that f, > 0 on M . Consider the metric f4 /(n= 2)
g, - From the transformation laws (1.2) and (1.4) we have

~4(n—1)L,f, 2 B,
(n _ 2)f1(n+2)/(n—2) ? 1= n — 2 fn/ n—2)"

(1.9) R, =

Hence

—4(n - ) 4/(n-2)
Rlzﬁlf1 =% and h, = 0.
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Therefore, the scalar curvature of g, has one sign, and it is straightforward
that (i), (ii), and (iii) are mutually exclusive and exhaustive possibilities.

2. Conformal normal coordinates at the boundary

In this section we assume M is a compact Riemannian manifold with
boundary and metric g, 0 is a point of M , and every point at the
boundary is umbilic. In this situation one can have normal coordinates at
a point on the boundary; moreover, one can have conformal normal coor-
dinates. These will be normal coordinates for some metric g conformal
to g . More precisely, we have

Proposition 2.1. For any N > 0, there exists a metric g conformal to
g on M such that

detg,, =1+0("),
where r = |x| in g-normal coordinates at 0. In these coordinates, if N > 5,
the scalar curvature of g satisfies R = 0(r2) and AR = —é|W|2 at 0.

Moreover, h = 0(r2) and Ay, h =0 at 0. Here W represents the Weyl
curvature tensor, and Ag,, is the Laplacian on OM with respect to the
induced metric.

Proof. Let ¢, be the first eigenfunction for the conformal Laplacian
with the boundary condition as in (2). The metric g, = (pf/ 2% g has
minimal boundary. Since every point is umbilic, the second fundamental
form is zero, that is, OM is a totally geodesic submanifold. Hence, take
normal coordinates at 0, such that x, = 0 is M. Now we proceed
as in the proof of Theorem 5.2 of Lee and Parker [8] to get the lemma

without the conclusions # = O(r ) and Ay, h = 0 at 0. In order to verify

that & = O(r 2) , we need to check that the second degree homogeneous
polynomial f in Theorem 5.2 in [8] which satisfies that the metric g, =

et g, has R, J.(O) = 0 is given by a polynomial of the form f(x)= cxi +

p(x,, - ,x, ;). This is a consequence of the Codazzi equation that
states, for 7, j,k<n,
(2.1) Rijin = M. = Pjne.e

Since the second fundamental form of the metric g, vanishes on 6 M,
(2.1) implies that R,,(0) =0 for i <n.
The transformation law (1.1) implies that
0=R, —-(n-2)f,+(n=2)ff,—Af+(n—- V)80
where the quantities on the right-hand side are taken with respect to the
metric g, . Observe that g, =0 for i < n. Since f is a second degree
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homogeneous polynomial, f,(0) =0, k=1,---,n. Hence f,,(0)=0
for i < n. Thus f has the form f(x) = cxi +p(xy, -+, x,_;). From
the transformation law (1.4) and the fact that g, is minimal it follows

that /2 = O(rz) at 0. Moreover 2 =0 on M for the metric g, .

In order to verify that A,, 4(0) = 0 it is enough to check that the third
degree homogeneous polynomial [, such that the metric g = e g, at
the point 0 € M satisfies

also satisfies 3 fn”(O) = 0. This is a consequence of the Codazzi
equation. leferentlatmg (2.1) gives, for 1 <i,j,k,l<n,

Rijkn'l :hik'jl _hjk'il'
The metric g, satisfies # = 0 on M. Proposition 1.2 implies that
h.J =0 on M and hence

(2.3) R;,.(0)=0, 1<j,I<n.
Contracting the Bianchi identity
Rijkl;m+szlm k+Rl]mk I~ =0

on the indices i, k and again on j, /[, we get

R, -2R . =0
In particular when m =#n,

R;n(O) =2R;,.;(0).
Thus 2R ,(0) = (2R, + R;;,)(0) =0 by (2.2) and hence R,,..(0)=0.

From (2.2) it follows that R, (0) = O, so that 37, lRm’,.(O) =
Differentiating the transformation law (1.1) and evaluating at O we obtain
for 1<i<n

(2.4) R;,.;(0) =R, ,(0) — (n—2)f,,(0).

Summing in (2.4) from i=1 to i =n—1 yields that Z;’: foi:(0) =0
The transformation law (1.4) implies our result.

Now let (M, g) be a Riemannian manifold with boundary and 0 €
OM . Assume that M is C* up to the boundary, and extend M to a
neighborhood of 0 € dM . Let B(0, r,) be a ball of radius r, such that
exp,: B(0, ry) C Ty,M — M is a diffeomorphism. For later reference, we
now state and prove the following fact.
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Proposition 2.2. Let 0 € M . Then for r small, the following asymp-
totic formula holds:

Vol(M N B,(0)) = %wnr" _ %h(O) (:',:21)’}&1

g,_1 n+2 n+3
= T RO+ 00",

where w, = Vol(B,(0)), o, = Vol(S"), h is the mean curvature of M,
and R is the scalar curvature.

Proof. Let x,,---, x, be rectangular coordinates on T;M such that
d/9x, is a unit normal vector to M at 0 € 9M . In a small neighbor-
hood of O define 9Q = expal(am) and Q = expo_l(M). Then we can
write 0Q as a graph (x, f(x)) , X =(xy,-+,Xx,_,), where

(2.5) Zh x.x. +0(x]),

ity
and hij is the second fundamental form of OM at 0 € OM . Since

X , X, are normal coordinates, we have \/detg =1+ 0(|x|2) . Then

L

Vol(M N B,(0)) = % Vol(B,(0)) - /B 11y T4 6% + Vol(A() + OCr ",

where
AP ={x €R"x; 4+ +x,_ <17, xj+-+xo_ + 1> x>
Using the Taylor expansion for f(x) given in (2.5) we have

n+1 n+3
/B;-—I(O)fde_—(Zh”>_——_n—l n+1)r +0(r ),

where we have used the fact that

_ a.n_z n+1
/B,n—l«» A T TRV

/B"‘l(O) XX X dx =0.

It is well known that in normal coordinates
1 3
vVE=1- gRij(O)x,.xj + O(]x]").

Hence using the symmetries of the ball as before, we get

Vol(B,(0)) = w, r" e - 2 (ZR ) + o™,

and
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To estimate Vol(A(r)) we observe that if

2 2 2 2
X+ x, T x, X, ) =T

and xf-{--»--i—x,zl_1 =R2,then

R+orRY="r,
which implies .

r =R+ OR).
Thus, if {(x,, -, x,_,)| = O(R) = O(r), then f(x) = O(r*) and

Vol(4(r) = (*(f "' = R"™)) = 0¢").
Since A(0) = (n—1)"" Tk, and R(0) = 3+ R,(0), we get the result.

3. The Sobolev quotient of a Riemannian manifold
of dimension » > 4 with a nonumbilic point
In this section we assume M is a compact Riemannian manifold with
boundary and metric g, and 0 is a nonumbilic point of 6M . Let Q(¢)
denote the Sobolev quotient of a function ¢ on M, and let E(¢) denote
the energy associated with L and the boundary condition B, that is,

2 n—2 2 n-—2 2
E(¢)—A<|V¢|g+mR¢ )dU+T 3Mh¢ dG',
E(p)
(fM |¢|2n/(n—2) d,v)(n—2)/n )

In this section we construct a test function ¢ such that Q(¢) < Q(Sf_) .
Hence we have

Theorem 3.1. Let (M", g) be a compact Riemannian manifold of di-
mension n > 4. If M has a nonumbilic point on M, then Q(M) <
o(S7).

Proof. Let R, ={(x,x,) eR"|x € R"!, x, > 0} be the upper half
n-dimensional Euclidean space. Observe that, for ¢ > 0 the functions

P (n—2)/2
ue(x, Xn) = (———)

e+ |x? + x,f

O(g) =

are solutions of the equations
Au, +n(n = 2)u"/*2 =0 on R,

(3.1) Su n
8778 =0 on OR_.
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Multiplying this equation by u, and integrating by parts, we obtain
2 2n_
/ [Vu,|"dxdx, = n(n— 2)/ ur—2dxdx,.
R} R}

From here we can express Q(S:i) in terms of u, as

\ . |Vu, | 2n \ 2
32 06" Jet n(n—2)</l; ug—z) ,

(le uﬁn/(n—Z))("—Z)/n

where the first equality follows from the work of Aubin [2] and Talenti
[14] (see [5]). ,

Let (¥;,---,¥,) be normal coordinates around 0 € 8 M , such that
7(0) = —52- and the second fundamental form of @M at 0 has a diag-
onal form. "By changing the metric g conformally and using Proposition
1.1, we can assume that g satisfies that # = 0 on the boundary. We
further change the metric g, in a small neighborhood of 0, by the met-
ric e/ g where f is a second degree homogeneous polynomial such that
R, q(O) = 0. From the transformation law 1.1 we see that 4(0) = 0. Glu-

ing the function e* to the function 1 with a positive function satisfying
the Neumann boundary condition on §M, we can assume that g is a
metric such that #(0) =0 and R, (0) = 0. Let p, be a small positive
number, and denote

—1 —1 2 2 2
By =B (0) = {x | x{ +-+x,_, < po}.

Let 4,, -+, 4,_, be the elements of the diagonal of the second fun-
damental form of M at 0. Then the vectors aiy(O) are the princi-
pal directions, and the A, are the principal curvatures. In these coordi-
nates, 9 M is given near O by the equation y, = f(y,,--- , Y,_1), where
fO sy, )= %Z;:ll ,ll.yl.z + 0(|y|3) . Consider the cylinder

2 2 2
Cp0 =‘Cp0(0) ={y=(x,x) | x|+ +X,_; <Py, —Po <X, <Py}

and '
C;O = C;O(O) ={r=(x,x,)€C, |x,>0}
Let w(s) be a piecewise smooth decreasing function |s| which satisfies
w(s) =1 for |s| < p,, w(s) = 0 for [s| > 2p,, and lw'(s)] < pgl for
Po<IsI <2p,-

Let s(y) = sa(x, x,) = max{|x|, |x,|} , where |x|2 =Xx{+ +x5_1 .
Consider the piecewise smooth test function ¢ on M defined as

2
1
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(n=2)/2
w8
(82 +yfP - 5y%>

A consequence of Lemmas 3.2-3.5 and inequality (3.5) below is that there
exists a constant ¢ such that

/ |V(o|§, dv <n(n-2)
C, "M

¢ = u(y os) where

n
_;wLyz_n + A + B &6 + D&% + cE;,
¢, (& +P)%)

where the constants 4, B, and D and the lower order term E; are given
in Lemma 3.5. In Lemma 3.8 below, we estimate the integral on the right-
hand side of the above inequality. Use of that lemma yields

(n=2)/n
/ Vo2 dv < O(S™) / P gy
C M & C, "M

70
2 F
+(n-2) F<1+ﬁ)
+ A6 + B 6 + D6” + cE, + CE,,

where F and the lower order term E, are given in Lemma 3.7, and [ is
given in Lemma 3.8. By means of Lemmas 3.9-3.11 we get

(n~2)/n ’
E(p) < Q(S}) ( /C . ™= d'u) + 4,6+ BA,e6 + D,

+ce2|5|+ce"|5|p0_"+c|5|3+ce3+ce52+cs"pé_"+ce|5|p0
+ce" 2\61py + e py + ce’l|log(p o/e) + e T p5 ",

where

PR bi’yidy 2 yidy y dy
1 =(m=2)n . TSR I |, N
, B, (1+1y) R, (1+ |y Jrz(1+[y]7)
5 _ (n—2)*na,_, [00 ar 2 / dr
Vo m=Dn+1) o 1+ A" (1+r)

/ o M2 gy

o (1+r)"H7
and D, is a constant which depends only on . If the constant 4, # 0,
we can choose J # 0 such that the term 4,0 in the above expansion is
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negative. By first fixing p, small and then choosing ¢ much smaller than
p, and ¢ such that |J| = ¢, from the last equality it follows that

) (n=2)/n 5 ) (n=2)/n
E(p) < / 0”72 gy (/ o= )dv) .
C, "M

If 4, = 0 (which actually is the case, as the reader can check easily, or
Just realize that if A4, # 0, then the above proof will show that the test
function ¢ defined in Ri has less energy than the function u, which is
a contradiction to (3.2), then we first notice that Lemma 3.12 implies that
B; <0. Since } 4, =0 and not all 4, are zero, because the point is not
umbilic, we can assume that 4, > 0. Multiplying the metric by a constant
and using the conformal invariance of the Sobolev quotient, expressed in
Proposition 1.1, we can assume A, is as large as we want. In particular
if n > 4, we require —4 B, > D, . So when n > 4, we choose first p
small, and then ¢ much smaller than p, and finally we set 6 = ¢ so that
the leading term in the last asymptotic expansion is of order ¢® and the
coefficient is negative. Thus the above last inequality is true, proving our
theorem.

When #n = 4, we need to improve the last error term in the last asymp-
totic expansion. In order to do that we use as a cutoff function the Green’s
function G, associated to the conformal Laplacian but with respect to the
Neumann condition but not the boundary condition given in (2). We as-
sume that the neighborhood of 0, where we glue the function e*’ to the
function 1, is done in a small neighborhood so that we can further assume
that 7 =0 on M — B” !

If Q(M) <0, the theorem is trivial. So we assume that Q(M) > 0.
Then Proposition 1.3 and Lemma 1.1 imply that A,(L) > 0, so that for
P, > 0 small enough, the first eigenvalue for the conformal Laplacian
with respect to the Neumann boundary condition is positive. Hence the
operator L with respect to Neumann boundary condition has a positive
Green’s function G.

In the appendix we show that G has the following asymptotic expansion
for small y:

GO) =y + N + (),
where a(y) = O(]y|log(|y|)). We define the test function ¢ as follows:
= ¢ f B, NM
=y v - 6v2w(ly)) Or Y € Bap, N
20 =\ &(GO) - ay)w2ly]) for y € (B,, — B,, )N M,

N foryeM—B+4p
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In order for the function ¢ to be continuous across 95, p, W€ must require
€ to satisfy

& -2
——— =¢&,((2p + N).
e pwat (GO
Because of Proposition 2.2, Lemmas 3.2-3.8 hold, if we replace Cp0

by B .
p
Usiflg Lemma 3.13 and arguing as in Lemma 3.5 but incorporating the
boundary term (3.18), we get a constant ¢ such that

4
9
/ Voldv<s | dy24+/ U, 2 dg
B,, ,AM B, (8" + v oy, OM
+ A6 + BAed + D&’ + cE;,

where the constants 4, B, and D and the lower order term E, are given
in Lemma 3.5. By means of Lemma 3.14 and the same argument as in
Lemma 3.8 we obtain

1/2
)

/ Vol:dv < Q(S) (/ (/)4dv) +/ 2 a”ﬂ do

B,, NM B,,,NM B3, n

29

+4F + 1 'F* 4+ 46 + BA,eS + D&’ + cE, + cE,,

where F and the lower order term E, are given in Lemma 3.7, and [ -is
given in Lemma 3.8. Using Lemma 3.11 and the same estimates as in §4,
after (4.9) where we replace p, by 2p,, we get

E(p) < 0(S*) ( /

22 —4 2 2 3
+C£0£ Py +U£0p0+C£ p0+C8

1/2
0* d'u) + 4,6+ BAe6 + D,6° — 2Na} &)

20"

3 -1,.2
+ce” log(p,/e) +cpylog(p, e,

+ cs2|5| + ca4|51p84 +¢|5]® + ced®
+celdlp, + ca2]5| log(p,/e) + 6'84/)0_2 ,

where A, and B, are given above, and D, is a constant that depends
only on the dimension. If 4, # 0 we argue as before. If 4, =0, since 0
is not an umbilic point, and ) A, = 0, we assume as before that 4, > 0.

Since the Sobolev quotient of M is positive, using the double manifold
of M (see Appendix) and Schoen’s perturbation Lemma 1 in [10], one
sees that N > 0. Multiplying the metric by a constant if necessary we can
assume that —4, B, > D, . This is possible to do because B, < 0 (Lemma
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3.12). Fixing p, small and then choosing J = ¢ much smaller, from the
definition of ¢ it follows that ¢ ~ ¢, . Since all error terms are dominated

by the negative term in ¢’ , we have

172 12
. dv) < (s (/ 0 dv) ,
nM M

and the proof of Theorem 3.1 is complete when n = 4.

In the rest of this section we prove the inequalities used in the above
argument in a combination of lemmas. In order to do that we let 1 <
p,q,r,s<mand 1<i,j,k,l<n-1,andlet 84 denotes the coeffi-
cients of the metric g with respect to the coordinates (y,, --- , y,). Itis
well known that g”?, the inverse of the metric g, in normal coordinates
has the following asymptotic expansion

3
(3.3) g7 =" — iR, vy, + OV,

where R, denotes the coefficients of the Riemann curvature tensor eval-

uated at the point 0. Also, it is well known that /g =, /det(gp q) has the
following asymptotic expansion in normal coordinates:

3
(3.4) VE=1-1R vy +O0(y),

where Rp g denotes the coeflicients of the Ricci tensor evaluated at the
point 0.
Observe that

/ Vol; dv = / &9,0,dv,
CponM CpoﬂM

where ¢, = 22 Then using (3.3) we obtain
14

2 2
/C OMIWIgde/C anWI dv -3 ,,,sq/ (ﬂp(pqy,ysdv
(3.5) 0 b0
3
vef  pPivelav,
C M

ﬂon

E(p) < 0(S%) ( /

200

where |Vo|* =g} +-- + 92
A straightforward calculation shows that on C 5, M

(n_ )2n2

(|yl —25}11 +9 yl)

3.6 vol* =
(36 Vol &+ =)
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- Lemma 3.1. For any numbers m, k and 1 < p <n we have
/ yz’)n dy _ 8m+2k—n/ 2"dz
2 Nk 2\n—k°
Cpo (8 + |y| )n Cpo/e (1+|Z| )n

Proof. The change of variables y = ex yields our result.
Remark. ILemma 3.1 is also valid of we use B instead of C

In what follows in this section, ¢ represents a constant 1ndependent of
¢,d and p,. In the next lemma we estimate the last integral in (3.5).
Lemma 3.2. There exists a constant ¢ such that

3 2
/ WP IVelPdy <E,,
C nNM

70

where E| = ce® + cezpo.
Proof. Using (3.6) and Lemma 3.1 we get

n-2, 5 5
3o 2 e “lyl'd 2 y|” dy
[ prwepdyse [ S [ DA
C,,M c,, (€°+yl%) G, (LH VP
Pole n+4
< e’ / LA g,
0 (1+7r9)
The second integral in the right-hand side of (3.5) is estimated in
Lemma 3.3. There exists a constant ¢ such that

Rprsq /Cpof“M 0,04Y.Ys dv<E,,
where E, = ce2|5| + C82|6[ log(p,/¢€) -
Proof. On C p NM, ¢ =u by definition. Thus
0

R / ypyqy,ysdv
o Je, o (&% + [y* — 0y})"

n2 |y1dy
9]
c, (& + )"

0

2 n-2

R, /C e dv < (n—2)%

Using Taylor’s theorem and Lemma 3.1 in the above inequality we get

2 n2 Y,V ¥, ¥, adv
R / dv < (n—2)%" R / YpYo) s 29
prsq C, M OpPe¥rs ( ) Pt Je, M (& + [y[H)"

_ d

C ﬁM(e +| | n+1 po/e +|y|)
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The symmetries of the Riemann curvature tensor implies that the first
integral on the right-hand side of the above expression vanishes. Applying
Lemma 3.1 to the second integral on the right-hand side yields

6
" dy
R / ?,9,Y yd'v<68|5|/ ———e
prsq Cﬂon prq po/e +,y,2)n+1
d
+ce’ls |/ Iyl y
p ol 1+|y|
2 pole n+5dr
<ot [
= l l 1+r2)n+1

pofe J+3
+ce |(5| ’ —df— <E,,
Ay
and hence our lemma.
The first integral in the right-hand side of (3.5) is estimated in
Lemma 3.4. The following inequality holds:

[ wvePavs [ veldy+E,
C,,NM C,,NM
where E, is given in Lemma 3.2.
Proof. The asymptotic formula (3.4), the fact that qu(O) = 0 and
Lemma 3.2 yield our Lemma.
We estimate the integral on the right-hand side in Lemma 3.4 in
Lemma 3.5. There exists a constant ¢ such that

2 e'd
[ velaysnm-2) [ S
C nM o e+ y]M)

720
+ A8 + BAed + D” + CE,,

where

2.2 2
4= (n - 2)2 {n/ |y| ylzerz)+1 - 2/ A dy2 n
®, (1+[y[") R, (1+y]%)

B (n- 2)2,7”_2 /oo 24 4y B 2/00 P2 g,
C (r=Dn+1) [Jo 1+ o 1+

1 I’y dy y*dy
D=n(n-27* 2L / 1 —2/—-————
( ) l: 2 R’_:, (1 + Iy|2)n+2 R’_:, (1 + [y|2)n+1

1 yidy }
nJr (14"
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and

n22n

E,=¢ld|p,+e |6|+l6| te+e p0+86 +ce |6|

Proof. (3.6) implies that

1 ) 8n—2 Zd
——z/ Vol dy=/ £ by
(n—2)"Jc, nm c,,nM (e + |y|” = dy7)

2o

n—-2¢ 2
(3.7) o fne
c,,nM (& + |y|” = dy7)

8"’262y12 dy
+ 2 2 2\n"

We estimate the three integrals on the right-hand side of (3.7). By applying
Taylor’s theorem to the first integral we obtain

/ ly|"dy
p) 3 3\n
C,,NM &+ yl" = dy))

— -2 2
</ e 2y dy +n/ " |y’yi dy
“Je, nm & +yH" C,,NM &+ P!
-2
L nnt ) e 6|y|y1dy n2||/ lyl dy

2 e, m A @+
(3.8)

“lyl? dy G2 I (Ix? + x2) dx dx,
S/CI (& +y" /B"'/ &+ x>+ xD)"

"2 / _Pyidy / /fIXI +x,)x; dx dx,
c;, &+ ) ”“ B! &+ x*+x )"+1
LoD blvidy e xldx
2 C+ (82+]y]2)n+2 n B;gl (82+x|2)n+2

lyl dy
s / T+ Py

po/e
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Observe that

/ /f(|x|2+x§)dxa’xn
- 2 2 2
B>t Jo (&7 +|x| +x;)"

_/ /f Ix|* dx dx,
n—l 0

&+ |x|* + x2)"

/ /f Ix* dx dx, /
+C
Bt Jo (& + |x[H)" B

- 2 2y\n+1
ot (&7 + [x]%)

|x[ dx
C/B"—‘ (& + |x|?)"

1x|8dx
<l .. 2 )
Byt (e” + |x]

|x|8 dx

x| dx

- x| (llx +c”kxx X, )dx
- Bn 1

(& +xM)"

C/ |x|8dx
n— 2 2\n+1
Byt (&7 +[x|7)

c/ _xiax
wel (o2 2
B~ (& + |x[7)”

The symmetries of the ball and the fact that } 4, = 0 imply that the

first integral on the right-hand side of the last inequality vanishes. For the
other two integrals we use Lemma 3.1 to get

—&
n—1
Bl’o 0

2, .2

(x|" +x,)dxdx,
2 NI

(&" +|x|” +x;)

(3.9 <ce’ + (,‘82p0.

Since

_5/ /f (Ix1* + x2) dx dx,
B~ Jo (82+|x|2+x§)"
fxPxldxdx
S_5/_/ 2 12 2’;1+1""|JI
BrtJdo (874 [x|7+ x,)

7 (x* +x Ydxdx, c|d|
J‘/ / t+ n—3
B! (% + |x|? +x) £

|x|8 dx
B (&8 + [xH)™!

|x|8 dx
B! (1 +|x|2)n+1

pole
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and Taylor’s theorem and Lemma 3.1 imply

S xPxPdxdx,
-0 ,,_1 2 2 2\n+l
g-tJo (& +|x|" +x,)

f |x| +xldx 5 x| dx
i T2 o 2yntl Cl l n—1 (o2 2\n+2
Byt Jo (8 +Ix|) B} (e" + |x|")

s O xl)(‘ix ydx s x| dx
N n—1 n+l C| | n—-1 2 2\n+1
Bt (& +]x) Byot (&7 + |x|7)
|x|10dx
+c|d —_—
| | B;;l (82+|x12)n+2
1 |x|2x12xl.2 dx L s Ix|” dx
R e 1200 -1 (] 2 A+l n—4c| | w1 (1 2 n+1
2¢ B (1+1x]) e B ,e + |x|%)
1 Ix|"dx
o [
87! 5 | p/z(1+'x’)+2
we have
(3.10)
—n-2) 2, - 2/ / |xl + X )x1 dxdx,
B (> + |x|? + x2)**!

2,22
(n—2)* / |x|"x7x, dx
< ———5——ngld|4, ——————+86 +ce”|d].
2 || B:/!e(l-f-[ ')n+1 l!pO ||

Now we estimate the integral on the right-hand side of (3.10).
i / [x|2x2x2 dx
gy (14 [x)™!
2.2.2
< 5/1./ PP dx =353
]R" 1

pole

(e 7o
< _5)‘1/ |x| xl d::-i-l
R (1+]x]?)
n—1 2.2.2
|x|"x] X, dx n=3 5 3-=n
—lek/ E‘w‘*‘é‘& |§|p0

s—éfow(T;:d—Lr(/ éldé+Z/I/ éékdé>

e 101py "
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A straightforward computation shows that

(3.11)

./Sn—z 612612 dé = (n 30

6n—2 . .

Hinry T
n—=2

(n=1)(n+1)

Since 4, = — Y i_, 4, , using (3.11) yields

2
_wfﬁ,{

2

pole

2,22 2
/‘ lx|°x3x; dx - (n—2)ne,_, /°° i dr
B! "o (

T+~ (n-Dn+1) 1+t

n—2 3—-n
+ce T|0lp, .

By means of (3.10), the last inequality (3.8), (3.9), and Lemma 3.1 we get

(n —2)2/C

n—=2, 2 2.2
s(n—2)2[/ e "yl dy+n5/ Iy, dy
cr ct

"%y’ dy
o (& + [y = ov))”

5 @+ ) o (L4 )™

o) n+4
B no,_, 8511/ Foodr
(n—1(n+1) o (1+rH"!

n(n+1) o lyl’yi dy
0 0+ D™

pole

8
x| dx
+ca52/ 1——'—]———+c|5|3+ce3+cazpo
B~

(1 + ,x|2)n+2

pole

+ce’|o] + ce" 2 (o1py ",

from which it follows easily that
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2 "y dy
(n-2) 3 2 N
Cpore (€ F V|7 =0¥7)

_ 2.2

<(n—2? / ¢’ 2Iylza’y+m5/ lyIy; dy

- C; (82+|y|2)" R:_ (1+1y|2)n+l
na,

_ - o rn+4dr
(3.12) CETCESd /0 ao

n(n+ 1)52 |y|2yfdy
+ 2 n 2\n+2
B, (1+[y]7)

2 3 3 2 2 - -
+ced” +clo’ + ¢’ + ce’py + ce?|6| + ce" 612"

For the second integral on the right-hand side of (3.7) we use Tayior’s
theorem to obtain

_/ 8"_2(5yfdy B _/ s”_zéyfdy
C, o (& + YIF =0y c,,nm (€8 = |y[*)"

(3.13) ponM oy
“n / —yl,,fl +0(3),
C, "M &+ 1y

where we have used that

/ " oLy dy _ / " 25’ Iy|° dy
c,,om (£ 1+ |y = Je, (&8 + )"

’0
3,,16
d
=/ 191 Iylny < cldl’,
¢, re (L+y[7)" +2

where the last equality follows from Lemma 3.1.
For the first integral on the right-hand side of (3.13) we observe that

/ (5y1 dy / (5y1 dy / / e 2(5x12dxdx
CnM(a + A" o &+ )" B! (e® + |x|? +x)

and that Lemma 3.1 and Taylor’s theoreni imply respectively

/ 5}71 dy / dylzdy =/ dyf +0(8n—2p2—n5)
=+ o L+ D e (LD o
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/ / e’ 25x1 dxdx / /f et 25x dxdx,
B~ e+ |x|? +x B! 32—6—|x|
+C/ &"%10]|x|" dx
n— 2 2\n+1
Byt (e + |x[%)
A s""zéxlzx.zdx
S _21— 2 12 n
Bt (&7 + |x[%)
/ e" 261 |x|’ dx
+c e S
Bn 1

(& + x|}

e" 20| Ix|P dx
+c 3 N ISR
Bt (&7 +|x[7)

Thus,
(3.14)
_ / 5y1a’y / oyt dy L h ¢ 2ox}x} dx
c nM( + )" v (L+ )" 2 Vet (& + |x)"
n—2 2—n

+ce Tpy 0] +celdpy,

where we have used that

n—-2 4
[ S o, [ B <o,
20

( +| | ) ﬂo/e (1 +lx|2)
and
n-2 8 p
e Pllxl dx / |x|” dx 2
@y s e —————=1 < Cc€ld|p;
/B;"o_l (£2+Ix| )’H’l | I 0 B; /12 (82+|x|2)n+1 | |p0

which follows from Lemma 3.1. Using Lemma 3.1 again we estimate the
second integral on the right-hand side of (3.14) as follows:

A; e 25x a’x Ai s&xf’xzdx
2 Jg (& +|x|) C 2 g (14 |x P
. j‘i 85x1x,. dx ( n—2 3_,,)'

= €
2 Jwt (14 xP)” Po
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Since

2.2 4 n—1
A x,x; dx A x, dx +Z xlx 2dx

I 4

2 Jp (1 P 2 w—l( +xP)" (1 xP)”

2/ +r) ( ”fld“Zi/ &e dé)

and A, =—-3"" 1,11 , using (3.11) we get

A; x2x}dx A an ) / "+1dr
2w (L4 xP)y (n=Dn+D)Jo (147

Substituting this in (3.14) and the resulting equation (3.13) yields

_/ s"_zéyfdy <_/ 5yfdy
c, o (8 + |y —oyD)" = Jrl (L+]yPP)

Aed oo nt2 252yt d
(3.15) 4 —150%n2 / d irn—n/ _““‘X‘l-ﬁlyT
(n=1DE+1DJy (1+r% c,,nu (&2 +|y]%)
+cl6)’ +ce" 2 p5 "|6] + celd|p-

The relation

c,,nu (&% + [y[?)™*! <, (a +|y| "*‘ - Jo (a E+ Pt

the inequality

/ / —25° y1 dy <c/ e 2% x| dx
B,, 1 8 +|yl n+1 - B:;l (£2+|x|2)n+1

6
5ca§2/ ———I—)—C%SCMZ
B (L +[x[7)

pole

obtained by means of Lemma 3.1, and
/ " oyidy / 8%yl dy
cf, (€ + Iy o (LH )"

52y1 dy 2 n—2 2-n
=— ———=—+00"¢ “p, )

imply that
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n—2¢2 4 2 4
e 8%y d oy, d
—/ z—yzln%s_/ O +ee” + e
¢yt (% + y°) = (1+ )

Multiplying (3.15) by 2(n —2)" and using the last inequality we obtain

an—zéyfdy
¢ o (&7 + yI* = 637)"
5y d
5—2('1—2)2/ %

R (1+y]7)
2(n-2),_, /w "2y
(n=DEm+1D""Jo 1+H"

yidy
R (1+[y?)"!

3 2 n-2 2—n

+celd|py +cld]” +ced” +ce T|d]p,

—2(n-2)

(3.16)

— 2n(n — 2)28°

For the third integral on the right-hand side of (3.7) we use Taylor’s the-
orem to get

/ "2y dy </ e 5%y} dy +c/ "1’ dy
c,,om (& + P =oy))" " Je,,om €+ e, @+ 1y

P

To estimate the first integral on the right-hand side of the above inequality
we notice that

c,,om (€ +y)" c; Ce +|y| gt Jo (& +|y|

and that Lemma 3.1 implies

n—2¢2 2.2 2.2

o7y d -2 2-
/#11_1 Mz/ (_é_y_l_d_y_w(en“n(sz)
C+

p
@E+pH" Jor, A+ 1+ [y%)" °

fen 252 d n -2 2 4
/ / Y1 y_c/ o2 x* dx_c/ d°¢|x| figcéze,
B! e +|y| B! (8 +|x| B (1 +|x|9)

pole pole

so that

n—2 2.2

5%y d o°y;d -2 2-

(n=2) / ——3; < (n— 2)2/ ——y’—zy—n+c52£+can zp% s,
C,,OM £+|y| (I+y")
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Using the last inequality we obtain
n—-2¢2 2
e “0yidy
2 3 2\n
C, M (&” +|y|” —dyy)

(n-2)°
(3.17)

s*yidy
<(n-2)7 / TN 524 ce" 2t "8 + ol
R (1+ )

where we have used the fact

/ "ol dy / "ol I dy / Py _ 5
C, M C c B

&+l T, @ +pH™ T (1+ |y

Polt

To complete the proof of our lemma, multiplying (3.1) by u, and inte-
grating by parts we get

. 8
(3.18) / |Vu8|2dy=n(n—2)/ y2 =) dy+/ u e dg.
cr C;D ac;, an

70

ou

Since 5= <0 on dC, we have
n Py

n—=2;. ,2 n
-2 [ S oy [
¢ (& +yl%) ¢ (&7 +|yl%)
Substituting this in (3.12) and using (3.16), (3.17), (3.12), (3.7) we thus
obtain our lemma.

In the next lemma we calculate the error terms introduced by the metric
when we calculate the integral of the function y2/n=2) , with respect to
the Riemannian measure dv . More precisely, we have

Lemma 3.6. The following asymptotic expansion holds:

/ W22 gy = / w2 gy 4 o).
C, M Y

Proof. The lemma fellows from the asymptotic expansion given in (3.4),
the fact that R q(O) = 0 and the estimate

. n_.3 3.3
_ d
/ 2l 2)|y|3dy§c/ 82 5% dzyn SC/ |y Zyn <cé.
C, M ¢,y (E7+1¥]7) Crore (L+ Y1)

In the next lemma we express the first integral on the right-hand side of
Lemma 3.5 in terms of the test function ¢ . For this purpose, we use our
previous lemma, more precisely, the following lemma.
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Lemma 3.7. The following asymptotic expansion holds:

n
/ _edy =/ 0™ dv + F + O(E,),
¢, (& +1yl) c, nM

where
F = —n/ 2 zyn+1 + 57 / . 2d:+1
R (1+[y]%) (n—l)(n+ DJo (+r
_n(n+1) / Jzyfdy
20 e 1+
and

n 2-n

E,=¢ |5[+s 15|p0 +|5| +e&+ed+e Po

Proof. Since ¢ =u on C 20 N M , Taylor’s theorem implies

/(-2 4, _ &' dy Js”ylzdy
4 y= 3 7 TN 2 Fontl
C,,NM c,,nM (&7 + |yl%) c,,nm (&7 + [y|°)

N n(n+1) / (528”yfdy 3
c

-+ 0%,
2 M &+ y|H"

where we have used the fact

3.n,.6 3 n.,6
[ lrebtas o loPebldy
C C

2 2\n+3 — 2 n+3 —
,onM (&7 + Y%) o (E2+ 1)

Rewriting the above equation, gives

2n/(n=2) 4 _ _&dy e'dxdx,

c o y= . a1 2 2 2\n
LM c, (&8 +P) g=tJo (&8 + x|+ x;)
n/ 5e"y, dy

G, (& + Iy
S
(3.19) —n/ / oe" x1 a’xa’xn+l
By Jo (e® + |x|* +x)

d
+n(n2+ 1)/;+ (8 jlyll )i’+2+0(5 £)+0( )
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where we have used the following estimate:

I 528 62" x| dx
/ 1/ n+2 < C/ ) NS
B, (e? +|yl) Bt (e +|x]7)

2, .6
Scf %Scazg,
B (1+1x]%)

pole

which can be obtained by using Lemma 3.1,
We estimate the two integrals in (3.19) that involves f. To this end,
we use the Mean Value Theorem to get

e'dxdx, I e"dxdx, 3
fo b = [ o,
B Jo (e* + x| +x B~ Jo (a + Jx|?)"

where we have used that

e"|x|%dx exbdx 3
- (@ + [x[P) =/ T+ =) sce.
By~ ( |x By ( |

pole

By means of the Taylor’s expansion for the function f, the symmetries
of the ball, and the fact that } A, =0 we obtain

1)' + d
/ / e'dxdx, =/ e" (34X Cukx i) 4 +0(e%) = 0",
n—1 0 (8 + ‘xl B~ ! (8 + 'x|

where we have used that

e"|x)dx &)x| dx 3
et T 1B = L T ey S8
Bt (e + x0T I (14 |x]%)

pole

which follows from Lemma 3.1.
Combining the last two asymptotic formulas yields

e"dxdx,
(3.20) / f = 0().
B> Jo s +lx] +x)
Similarly, for the fourth integral on the right-hand side of (3.19), we have
f I "
n/ / oe"x} dxdanr1 _ / / &"x; dxc’l:fl + 006
By Jo (% + x| + x;) By Jo (% + 1x|%)

e =n/ e xl(llx dx o
: B‘,:O; (3 ,x, )IH-I

2

9),
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where we have used for the first equation, the estimate
161e"|x|® dx |5|a3|x;8dx
=1 (82 x2 n+2 < n—1 (1 ' , )n+2 - ‘5'8 ?
B +|x|7) By (1+|x
and, for the second equation,
"o |x|’ dx 2
/_1 2 5ot < c8 19],
By (& + |x|)

which follows from Lemma 3.1. We compute the integral on the right-hand
side of (3.21) as follows:

/ se"x}(3a.x)) dx 3 / oes (A x7)dx
B i

) 2 2ntl i
1 (e + x| + )" (1 + x|

1) 1/1 d -
=n/ lﬁ(—-—x—)—x%-O(a"dplo ™.
Rn

(1 + |x?)™*!

By means of polar coordinates, for the last integral we obtain

/ Sex? (3 /lx ydx &6 /lledx Z/ x1 dx
R L (1+|x, n+l - 2 Rn—] (1+|x|2 n+1 R~ |(1+|x| n+1

85/' r"2dr
(1 +r )n+1

n—1
y (/11 /S HdeeYa, /S - ag dé)
i=2

0, ,804 /°° " dr
S =D+ o (14

where the last equality is obtained by using (3.11) and the fact that E;’;zl A
= —A, . Combining the last equality and (3.21) yields

n/ /f oe"xidxdx, no, ,edl, /°° " dr
B Jo (8 + |xP +x)"! _(ﬂ—l)("+ )Jo (147"

+O(e°6) + O("5py ™).

i

Substituting this and (3.20) in (3.19) and Lemma 3.1 we get
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n 2
2n/(n—2) e dy dy dy
/ ¢ dy = / 2—“‘z—n+”/ T
c,, M e, €+ vl ¢t (L1017
no, ,edl, " dr
n~1)(n+1)/ (1+r2)"+‘
nn+1) 8%y} dy
T g T
¢ (1L+y%)

+0(6%) + 0(”) + O("5py ™)
+0(8%) + 0(%9),

from which we easily obtain

n 2
Wmin-2) ;. e dy oy, dy
/ v dy = / _2"—2"'*'"/,, TR
c,,NM ¢, (&7 + 1yl r (1+1y]9)

na,_,ed4, co 2 g,
S (n=Dn+1) /0 (1+ )"
n(n+1) / 8%y} dy
2 Jm (1 yfy
+0(8°e) + O(&%) + O(e"6p; ") + O(8°) + O(°6).

The conclusion of our lemma thus follows from the last asymptotic for-
mula and Lemma 3.6.

In the next lemma we relate the value of the integral on the left-hand side
of Lemma 3.7 with the value of the Sobolev quotient on S:'_ . In order to
do that we use Lemma 3.7 and the characterization of the Sobolev quotient
given in (3.2); more precisely, we need

‘Lemma 3.8. There exists a constant ¢ such that

e dy (n=2)/n
n(n - )// S 0l [ e
* (8 + v C, "M ;

F

2

)-+—cE4

where I = [gn UT{T#V ,and F and E, are given in Lemma 3.7.
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Proof. Taylor’s theorem and Lemma (3.7) imply

(n—2) (n=2)/
gdy \" (n=2)/n "
2 2\n = ¢ dv
¢ (&7 +1y[%) C, M
2 —2/n
—_— 2,
+ 2 / (p’T‘%d'u F

h C,onM

P

2 -2/n—1
_n —2 (/ ¢2n/(n—2)dv) F2 n 0(E4).
n CpoﬂM

Writing

/ e'dy / e"dy Z/n/ e"dy )(n—Z)/n
c, @+ cr, (& + [y c, (& + )" ’

we get, in consequence of (3.2),

gnd R (n—2)/n
n 2 -
n(n —2)/ < Q(S) (/ ™" )dv)
e, &+ ) ¢, M
~2/n " 2/n
+(n-2) (/ g2 dv) (/ gy n) F
C,,NM c, (& + Y19

5 —2/n-1 n 2/n
B _ d

(=2 ( / 1= dv) < / _f_yz_n.) F® 4+ CE,.
n c, NM c;, (&7 +1yI%)

Using Lemma 3.7 and Taylor’s theorem we obtain

n (n=2)/n
nn-2) [0 < oSl ( [ gt dv)
¢, (€ +yl) C, oM

2 F L
+(n—-2)°F (1+ ﬁ) +cE,,
from which the lemma follows.
The next lemma shows the contribution to the energy E(¢) of the
Dirichlet integral on (C, o~ Cpo) nM.
Lemma 3.9. There exists a constant c, such that
n—2 2-n

2
/( |Vol,dv <ce” “py .

Copo=C, )M
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Proof. We first observe that since the metric in Euclidean, up to second
order in normal coordinates

2 2 2o 2 2
IVol, < Vol +clyl'|Vel” < 2|Vel".

The definition of ¢ and Schwartz’s inequality imply

2 2.2 2 2 1 2 2
Vol <4(Vy[u” +y'|Vul) < 4 (?u +|Vul )
0

Thus using (3.6) and

1 1
(& + " = ov)) = 5" + y) 2 340

on (C

2, —Cpo)ﬂM,We get

/ |V(p|§ dv<ce “py
(Capy=Cpy M

In the next lemma we calculate the integral involving the scalar curvature
in the definition of E(gp).
Lemma 3.10. There exists a constant ¢ such that

(n—2) / 2 3 2
e R dv <ce” +ce p,.
4(n—1) Cypy M Y Po

Proof. On C, ” NM wehave ¢ < u. Since R(0) =0, the Mean Value
Theorem and the asymptotic formula (3.4) imply

(_”:_2_)_/ R,,,zdm/ |y,uzdy<c/ I
4(n—1) Je, rm = e, m = e, €+ )

2p

Therefore using Lemma 3.1 we get

3
#—/ R¢2dv§c/ %§ca3+ca2po,
(n=1)Je,, nm Copore (1 Y17
proving the inequality.
Lemma 3.11. There exists a constant ¢ such that

/ 1 h(p2 do < ce’ + cazp0 + C82|5| + c|5|82 log(p,/€)-
B},

Proof. Since in normal coordinates the metric in Euclidean up to the
second order, we have
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/ h(pszS/
B

hp’dx+ c/ ho*|x) dx
B B!

n—1 n—
29 2p9 200
2 2 2 4
5/ ho“dx +ce" py+ce,
Bn—l

2/)0

where we have used A(0) = 0 and Lemma 3.1 to get
/ h(pzlxlzdxgc/
ng—-ol B;p—ol
3
dx
< c£4/ Lz?-‘z‘ <ce'+ cazpé.
at (L xP)

The Mean Value Theorem implies that

n-2 2 3 5
/ Ih(pzdxs/ he" "y dx +c£n—2/ l(|(5||x| + |x")dx
B~ B

) =2 2 -1
o By (% + [x]%)" b (& + X))
hb‘n_z de 2 2
S/,,_1 3 Wz —— +c|d|e” + cl|d|e” log(p/e)
By (" +|x")

where we have used the following estimates, which are easily obtained in
consequence of Lemma 3.1:

n—2 3 2 3
e 8l x| dx / e8| |x|” dx 2 2
B Lo N i Bl 2 PR 22 < ce’ld) + cldle” 1o e
/l;,,_l (82+I.x|2)n_1 B! (1+[x12)n—1 I | | 1 g(po/ )

2p0 2pp/e

and

n-2 5 4 5
Bt (87 + 1x[7) Bt (L4 1x|%)

Since A(0) = 0, the Taylor’s expansion for the function # yields
h- 0 ] n-2 12 x n—2 2
/ he' dx < / 4 )2XZ8 zyln—(lz ) dx + c/ 82 |X|2azz-
B B (e +|x]%) B (&2 + |x|)
By the symmetries of the ball and the fact that ¢ = w(]x|) we see that
the first integral on the right-hand side of the above inequality vanishes.
An easy computation shows that

n—-2 2 3 2
e x|"dx elx|"dx
/,._1 "‘T”"le"”n-—‘z_ =/ » ———'—“—2,,—_2 S683+C82p0.
By (&% + |x]%) B (1+]x])

2p /e

2pp

2p /e

The above estimates hence imply our lemma.
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Lemma 3.12. The number

B - (n—2)2nan_2 /°° i dr 2/°° " dr
" n=-Da+1) o a+A™ nle q+)

o0 rn+2 dr
/0 (1 +r2)n+1:|
is negative.
Proof. Integration by parts shows that
/°° Pdr n+3 (= Pdr
o (142" 2n Jo (144"

o) rn+2 dr foe) rn+2 dr fes) rn+4 dr
Vo A o S e 28
‘/0 (1 +r2)n ‘/0 (1 +r2)n+1 0 (1 +r2)n+1

a computation yields that

Since

/ rdt 1 L m— / "2 dt
A+ Cn-m-1)@a4+2"" 2n-m-1J (144"
Thus

/°° " dr _n+3 [ "2 dr
o 1+ n=3Js 1+’

/°° "2 dr _2n /°° "2 dr
o (1+77" n=3Jo 14+
Hence
5 (n~2)20_n_2 _n/oo rn+4dr +2/oo rn+2dr
L (n=-1)(n+1) o (1+4rH)"H o (1+7%)"
o M2 gy
+n/ _rar_
0 (1+r2)"+1)
. 2n(n—2)20n_2 /°° " dr
0o (

(n=3)(n-1)(n+1) 142"t

The next two lemmas deal with the four-dimensional case only, and the
first one is an estimate on the Dirichlet integral.
Lemma 3.13. There exists a constant ¢ such that

/ Vol dv < 4/
(B M B

2p¢

and

2.2
3 d -
—2—lyl—%+ce:2|6|/)02+E1 +E,,
-8;, (&°+ y[%)

Zﬂo_Bﬂo)n
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where E, and E, are given in Lemma 3.2 and Lemma 3.3 respectively.
Proof. A similar calculation as in Lemmas 3.2-3.4 shows that

Jo

2P0

Vol dv 5/ Vol dy +E, +E,,

200~ Bo) M

—B, nM
20
where E, and E, are given in Lemma 3.2 and Lemma 3.3 respectively.
By the definition of ¢ and the inequalities lV(y/ylz)l <cp, and £2+|y|2—

(Sy/yf > Cpé on (szo - Bpo) NnM we get

| 2 &yl dy
/ |V(0|gd’U S‘ 4 2 2 2\4
(BZPO_BPo)mM (szo—Bpo)ﬂM (8 + |y| - 6'//)’1)

+ cezlélpgz +E +E,.

The Mean Value Theorem implies

2.2
/ Vol2 dv < 4 izl_yl_efzy_4
(Byy, =B, )M (Byy,—B,,)0M (€° + |¥]°)
2 2 2
e°|o
+c/ |2||y| v2/y41 dy
(Byp,—B, M (€° +|¥[7)

+ ca2|(5|p52 +cE, +CE,
e’ly|* dy
<4 ) 2.4
(B, ~B, M (7 + |y|°)
+ce’|6|py’ + E, + E,.
Using Proposition 2.2 and the fact that #(0) = 0 and R(0) = 0, we obtain
2.2
4/ e El’dy < 4/ ¢ vl afzy4 + e,
B,,-B, o (&% + |y|))* B}, -85, (& +|y[%)

200 o
Combining the above two inequalities yields our lemma.

In the following lemma we deal with the integral of the function

™D when n=4.

Lemma 3.14. The following asymptotic formula holds
4
EdY L0 + 0 507",

/(B -B, )0 M B}, -8, (& +y[%)

Proof. A similar calculation as in Lemma 3.6 shows that

/ (o4d'u =/ (o4dy+0(e3).
(By,,~B, INM (B,, —B, N\M

29 TPo

2p0
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The Mean Value Theorem implies

Jo,

where we have used that

4,02
e |6ly y dy 40 —10_2
/ TR 5259/ £'181pg vy dy
(B, =B, )NM (& +|yI* ~oy7) (By, =B, )NM

4
4 ed -
9 dy =/ e + 005"
0B, M (B,, —B, )M (" +|¥]")

20" Zro

4,0 —4

<ce'|d)py -
By Proposition 2.2, the fact that #(0) = 0 and R(0) = 0, and the estimate
in the proof of Lemma 3.6 we obtain

/ e'd y / etd y

N )
BBy (82 + ) JBg, —5; (88 + D)
Hence the lemma follows from the above estimates.

O(e

200

4. The Sobolev quotient of a Riemannian manifold
with umbilic boundary

In this section we assume (M", g) is a compact Riemannian manifold
with boundary of dimension # > 3, 0 is a point of M, and every
point at the boundary is umbilic. We use the coordinates introduced in
Proposition 2.1 and the Positive Mass Theorem, which will be discussed
in the Appendix of this paper, to prove the following.

Theorem 4.1. Let (M", g) be a compact Riemannian manifold with
boundary. Assume that M is umbilic and that M is not conformally
diffeomorphic to S} . Then

(4.1) QM) < Q(S}),

if either
(i) the Weyl tensor does not vanish identically on M and n > 6,
(i) M is locally conformally flat, or

(iii) n=3,4, or 5.

Proof. It is enough to construct a function ¢ such that Q(g) < Q(SJ':) .
By Proposition 1.1 we can assume that g is the metric of Proposition 2.1.
In case (i), let 0 € M such that the Weyl tensor does not vanish. Let
(xy» X5, -+, X,) be conformal normal coordinates at 0 € M/ . Consider,
for & > 0, the functions

. (n-2)/2
elX) = <£2+|x|2) '



58 JOSE F. ESCOBAR

Set ¢ = u,w, where y is the same cutoff function supported in B, 2%
as defined in §3. Taking N in Proposition 2.1 arbitrarily large, we can
make dv_ as close to dx as we want. Therefore we will assume that
dv = dx in conformal normal coordinates. Since ¢ is a radial function

and g = =1 in normal coordinates, we have |V(p| = |0, (pl Thus

—2)/n 9

2 -2 u

(4.2) / ]V(/)|gdx§Q(S:'_)(/+ i >) +/ w2
B By, o8B, n’

Po

A straightforward computation shows that du,/dn <0 on 8B 5%

In conformal normal coordinates R = 0(r2) and AR = —%[W(O)|2 , SO
(4.3)

/ Ry dx—/ / < R, x;x; +O(r ))ufdw,dr
B+ S+

—/ (—cr IW( )|2+0(r3))<—8—>n—2r"_1dr<E
~Jo e+ 1 -

where - s
E { —c|W(0)|e +ce ifn>6,
n:

—c|w(0)]e* log(e ' py) +ce* ifn=6,
and in the last inequality we have used the change of variables r = &¢.
A straightforward computation shows that

(4.4) Rp*dv < ce"?
B3,,—B,,

Since A = 0(r2) at 0 € 9M we have, by the Taylor expansion for 4,

2 1 € n=2
ho dag/ —h,.‘x.x.<————) dx
/BpOnaM B;;O_l 2 HE 7 i Y 82+ |x[2
1 P n-2
+/ ~h .. XxXxXx (—————) dx
B/’)';] 6 171 200 el M 4 82+|.X|2

4 e n—-2
+C/ IX| <'2———7) ax.
B! £+ |x|

Because of the symmetries of the ball and the fact that A,, 4(0) = 0,
the first and second integrals on the right-hand side vanish. For the third
integral we use polar coordinates and then the change of variable r = &t

to get
2 5 po/g tn+2 -
/ h¢ dO'SCE / __Z—n—:-fdtSEn’
B, naM 0 (1+19)
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where
cs5+cs4p0 ifn=26,
(4.5) E, =3 ce’logle ' p,) ifn=7,

ce’ if n > 8.
Tt is easy to check that

2 -2
/ ho do < ce"
8MNB2p,—B

20

Using the last two inequalities, (4.2), (4.3), and (4.4) we obtain
N T . ,
EW)SQ(SD(/ ¢ "/("_)dv> +E +E +ce"”
M

Since the Weyl tensor does not vanish at 0, we have |W(0)|2 >0. Fix p,
small and choose & smaller to get

E(p) < Q(Sz)</M¢zn/(n—2) dv)(n—z)/n.

Thus (4.1) follows in this case.

For the second case, we assume (M) > 0, otherwise the inequality
(4.1) is trivial. We will use a global test function and the idea introduced
by R. Schoen in [10], that is, the Green’s function of the associated lin-
ear operator. Since M is locally conformally flat, by Proposition 1.1 we
can assume that near 0 the metric is the flat metric and the boundary is

minimal. Let (x,---, x,) be rectangular coordinates around 0 € OM .
Since M is umbilic and minimal, it is a hyperplane. We can assume
that M is given by x, = 0 in the coordinates (x,,--- , x,). Let G be

the positive solution of LG =0 on M — {0} and BG =0 on 8 M — {0}.
Since G is a harmonic function near 0 which satisfies % =0 on M
near 0, it has an expansion for |x| small:

(4.6) Gx)=|x""+ A +a(x),

where a(x) is a smooth harmonic function near 0, with «(0) =0.

Let p, be a small radius, and ¢, > 0 a number to be chosen small
relative to p,. Let u,(x) and w(s) be as before. We now construct a
piecewise smooth test function ¢ on M as follows:

u,(x) forxeMﬂBpo,
4.7)  ex)=1 &(G(x)—a(x)y(x])) forxeMn (B2p0 - B
&G forxeM—szo.

.l
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In order for the function ¢ to be continuous across 9B 5, We must require
¢ to satisfy

e (n~2)/2 yn
(4.8) (—2—2—) =¢g(py, +4).
&+ p;

We compute E(p) as a sum of the energy in B 50 N M and the energy on
M—-B py " By means of (3.1) for u,, after integration by parts we have

2 2n/(n—2 ou,
/+ |V, | a’x=n(n——2)/+ u"e )dx+/+ U,
B B BB‘,QDM

4] 4]

Using (3.2), the definition of ¢, and the fact that dv = dx we get

(4.9) / \Vol’ dv
Bpor‘tM

(n—2)/n F)

2n/(n—2 U
SQ<S11>(/ ™ )) +/+ Uyt
B, nM 8By NM r

Evaluating the energy of ¢ on M — B 54 yields
2 n—2 2 n—-2 / 2
Vol + —= he“do
/ 5, Vole + gy R 7 Jorren, "
2 2 n—2 2 n—2 2
=g VG|, + —=RG ) v / hG do
0 [/M—B‘,o (I B 4(n—1) 2 Jom-3,,

+/ (IVwalz —2VG. V(wa)) dv
MnB,, -B,

+ —"_—2—/ ( ~ 2RGay + Rd’ wz)dv
4n-1) MnB,, ~B,

ngz/ (—ZGay/+a2y/2)hdc].
oMN(B,, -5, )

Since a(x)| < c|x| and |[Va| < ¢ we see that |V(wa)| < ¢ for p, < |x| <
2p, . Using this and the fact that » = 0 in a neighborhood of 0 we get

+

-2 -2 2
Vol + —— dv + ho do
/M_ R ol + TR 7 Jores, "

n-— n—2 2
<g VG — " _RG ) v / hG a’a]
0 [/M—BM (l l 4(n — ) 2 oM-B,

2
+cp o&p-




THE YAMABE PROBLEM ON MANIFOLDS WITH BOUNDARY 61

Since G satisfies LG =0 on M and % +232hG = 0 on oM — {0},
the first two terms on the right-hand side of the above inequality become
a boundary integral:
2 n-—2 2) n-2 / 2
Vol, + —R dv + ho“do
/M—Bﬂ (l g 4(n—1) v 2 Jom-s, 4
(4.10) 0 0

0G
< —83/ GB_ + cposg.
MNdB, r

Since (M", g) satisfies that R = 0 and 4 = 0 in a neighborhood of 0,
we have (4.9) and (4.10), using in consequence of

(n=2)/n
@11  E@)< Q(Si)( /M el dv)

du 2.,0G 2
+/ (u—“——aG———)-i—c E;.
a8y NM zor 07 or Poo

If M is not conformally equivalent to S:’_ , then in the Green’s function
expansion (4.6), A is a positive constant. In the Appendix of this paper
we prove that the Positive Mass Theorem holds in this case, thatis, 4 > 0
and 4 = 0 if and only if M is conformally equivalent to Sf:. We use
this to show that the boundary integral is negative. For |x| = p, from
(4.6) and (4.8) it follows that
2 -1

% - 80% <-(n- 2)80p51 [(pﬁ_" + A)((—If—()) + 1) - p%_"] + ce,.
Using the inequality (1 + tz)_1 >1-£, we get

ou, _, 9G _

ar  09r

(n - 2)AE0p0_1 + cpgla(z)a2 + c&,.
Thus

ou 2,..0G 2 22 — 2
/ (ub,—a—re - 80G3r—> <-(n- 2)Ao;'_180 + cgpe” p, "4 CEy Py
MDB, _
Substituting this in (4.11) gives
@nfin-2) , N
n ni(n—
E(p) < Q(S+)</M¢ dv)

~(n—2)Aa._ &5 +cerepy" + cesp,-
Fixing p, small and then choosing ¢ much smaller we have from (4.8)
that e 27? ~ g,. Since 4 > 0, we have

{n=2)/n
E(p) < Q(S:)(/M ¢2n/(n-—2) d’l)) ]

Hence the theorem follows.

(4.12)



62 JOSE F. ESCOBAR

For the case (M", g), where n = 3, 4, 5, we outline the necessary
changes in the above proof. Set ¢, to be the first eigenfunction for the
conformal Laplacian with respect to the boundary conditions as in (2).
Lemma 1.1 states that the metric g, = qof/ ("’z)g has minimal bound-
ary, and hence Proposition 1.2 implies that the second fundamental form
vanishes on M. Let (x;, -+, x,) be geodesic normal coordinates at
0 € M so that the boundary is given by x, = 0.

When n = 3, the Green’s function G for the conformal Laplacian with
the boundary conditions as in (2) with respect to the metric g, has the

expansion for x small as
(4.13) G(x)=x|"" + 4+ 0"'(x]),

where A is a constant. Here we write f = O'(r") to mean f = O(™)
and Vf=0r"""). 0" is defined similarly.

When n =4, we let f be the second degree homogeneous polynomial
such that g, = ezfg1 satisfies RU(O) =0, =0 on M. This was
proved in Proposition 2.1. It is proved in the Appendix that the Green’s
function G for the conformal Laplacian with the boundary conditions as
in (2) with respect to the metric g, has the expansion for x small as

(4.14) G(x) = |x| 2+ 4+ 0" (|x|log|x]).

Using Proposition 1.1 we can assume that g is the metric g, for n =3
and g, for n = 4. Let ¢ be as above, and apply the same argument.
Correction terms must be introduced in B;' 2, to account for the difference

between g and the Euclidean metric. It follows from Proposition 2.2 and
the fact ¢ = u, on B;D is radial that

/ Vol dv < / Vu, [P dx + c/ "V, P dx
B: Bt Bt
0 0 0

CEP, 5 n=3,
5/ IVuE]de+{ 0
B+

20

3
ce” +cep,, n=4,

and

2 —_—
/ 2102 gy / P g { «, L on= 3,
B;, B, ce” +ce log(p,e ') n=4.

Using the definition of ¢ and the fact that R(0) =0 for n =4 we get

CEP, , n=3,
Rqozdvg{ 0

2 -
B; ce"py, n=4
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For n =4 one easily checks that the inequality (4.10) holds with the last
term being cp,log p, laé instead of cpos(z) . This error term comes from

the term O”(]x|log|x|) in the Green’s function expansion (4.14).
We finally have

n 2n/(n=2) (n=2)/n + 2
E(9) < Q(S+)(/M(p dv) —(n-2)4a" & +E,,
where E, is the error term,
Ey;= csészpo_3 + caépo + cepy + ce’ ,
E, = caészp;4 + cagpo + ca2p0 +ce +ce log(pos—l) + cp,log pglaé.

Fixing p, small and then choosing ¢ much smaller, we have from (4.8)

that ¢ /% & g,. Since 4 > 0 (see the Appendix), we have that all error
terms are dominated by the negative term, and the proof of Theorem 4.1
is complete when n =3 or 4.

If n =5, by the transformation law 1.1, it is easy to check that there

3
exists a constant ¢ such that the metric g; = &% g, satisfies all the

conditions which g, does and R,, ,(0) = 0. Similar considerations as
in Proposition 2.1 show that for the metric g,, R, ;0 =0 for 1 <
i,j<4and 3/ R; ,(0)=0. Now it is straightforward to check that
Vol(B,(0) N M) is asymptotic Euclidean up to fourth order. With the
metric g, as above we can proceed as in the proof of R. Schoen [10, pp.
484-493] to get the theorem.

Remark 1. Let Q c R” be a bounded domain with smooth umbilic
boundary and » > 3. It is elementary to see that if Q is not conformally
equivalent to the ball, then € is a ball with a finite number of balls deleted.
If one considers  as a domain in Sz such that BSZ C 9Q for the
constant function 1 on £, we have Q(1) < Q(SZ) . Thus we do not need
the Positive Mass Theorem in this case to prove inequality (4.1).

Remark 2. It is clear from the proof of Theorem 4.1 that the hypothesis
on the boundary being umbilic is not necessary. The proof uses only the
fact that it is umbilic in a small neighborhood.

In the case n = 3 we will weaken the hypothesis of umbilicity of
the boundary and only assume the existence of one umbilic point on the
boundary. The following theorem will be needed in the proof of Theorem
5.1 in the next section. _

Theorem 4.2. Let (M, g) be a three-dimensional manifold. Assume
there exists an umbilic point on OM and that M is not conformally dif-
SJeomorphic to Si. Then Q(M) < Q(Si).
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Proof. We outline the necessary changes in the above proof. Change
the metric g to the metric g, = q)‘l‘g as before. By Proposition 1.1 it is
enough to establish the above inequality for the metric g, . Let (x,, x,) be
normal coordinates at the boundary around 0 € dM . Let (x,, x,, x;) be
Fermi coordinates (see the Appendix for the definition and discussion on
these coordinates). The boundary condition defined in (2) is the Neumann

condition because 2 = 0 on 8M . Moreover, in these coordinates 5‘% =

ax . Since 0 € 8M is an umbilic point and minimal, Proposition 1.2
1mphes that the second fundamental form vanishes at 0. Thus the Fermi
coordinates are normal coordinates. We show in the Appendix that the
Green’s function for the conformal Laplacian has the following expansion
for x small:

G(x) = |x|”" + 4+ 0"(x|).

We show in Appendix that 4 > 0 if M is not conformally equlvalent to
S3 with the standard metric.

To prove the above estimate define the function ¢ as in (4.7). Now
observe that in the 3-dimensional case the same estimates apply in any
normal coordinate system, not necessarily geodesic normal coordinates.

5. The Sobolev quotient of a three-dimensional manifold
with a nonumbilic point

Let (M 3 , &) be a three-dimensional compact Riemannian manifold
with boundary. In this section we prove the 3-dimensional version of
Theorem 3.1. ‘

Theorem 5.1. Let (M, g) be a 3-dimensional Riemannian manifold
with boundary having a nonumbilic point. Then

(5.1) Q(M) < Q(S)).

In order to prove Theorem 5.1 we let p € OM be a nonumbilic point.
Let 6 be a small positive number. Choose 0 € 8M such that it is not near
p . We perturb the boundary of M in a small neighborhood of 0. That is,
we construct manifolds M that coincide with M outside a ball around
0 of radius 26, and 0 € dM; is an umbilic point. Because p € dM;
is a nonumbilic point, M; is not conformally equivalent to Si .- Thus,
Theorem 4.2 implies that Q(Mj;) < Q(Si) . The correction term in the
expansion of the Sobolev quotient Q(Mj) is the mass 4;. In Lemma
5.2 we show that the positivity of the masses is preserved under passage
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to the limit. Using this we are able to show that the strict inequality
Q(M;) < Q(Si) is preserved when one lets J go to zero.

Proof of Theorem 5.1. We assume that Q(M) > 0, as otherwise, the
inequality is trivial. Using Proposition 1.1 we can assume that g is the
metric given by Lemma 1.1, that is, R g 0 and the boundary is minimal.
Let p € M be a nonumbilic point and 0 € M be any other point. Let
(x,, X,, X;) be normal coordinates around 0 € OM such that 5(0) =
—;’73 and the second fundamental form of A at O has a diagonal form.
Let 4,, A, be the elements of the diagonal. Then for i =1, 2 the vectors
%(O) are the principal directions and the A, are the principal curvatures.
In these coordinates, 9 M is given near 0 by the equation x, = f(x,, x,),
where f(x,, x,) = %Aixf +0(lx|3) . Let w(x,, x,) be a piecewise smooth
nondecreasing function of |x| which satisfies y(x) = 0 for |x| < J,
w(x)=1 for |x| >25,and {V/y|<cd™’, j=1,2,for § <|x|<25.
Consider the manifold M; with defined as the perturbation of M in a
neighborhood of 0 boundary d M; given by the equation x, = f . Thus
dMj agrees with dM outside Bj,. Observe that 0 € M, is an umbilic
point because (x,, X,, X;) are geodesic normal coordinates at the point 0.
It is easy to check that the second fundamental form of 0 is bounded
independent of J. Let B; denote the linear boundary operator defined
by (2) on M. Let A; denote the lowest eigenvalue of L with respect
to the boundary conditions B, and A the lowest eigenvalue of L with
respect to the boundary condition B. Let G be the Green’s function of
L with pole at 0 normalized so that lim, Ix|"">G(x) = 1. Then we
have

Lemma 5.1. The eigenvalues A5 converge to 1 as & tends to 0, and
hence A; > 0 for & sufficiently small. Thus L with respect to the boundary
condition By has a positive Green’s function with pole at 0 normalized so
that limm_*0 |x|"—2G5(x) = 1. The functions Gz converge uniformly to G
in C* norm on compact subsets of M — B(sl(O) Jor some o, > 0.

Proof. Since |y"(r)] < cr™2, by the definition of /,(g) it is uniformly
bounded. From the variational characterization of the first eigenvalue it
follows that A; — 4 when 6 — 0. Let 6, > 0 be small enough. Integrating
the equation which G; satisfies, and then using integration by parts and
the fact that we have normalized the functions G;, we get

/ RgG5 dv <c,
M~B, (0)
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where ¢ is a constant that does not depend on & . Since R ¢ > 0on M,
we have a uniform integral bound for the Green’s function G;. Elliptic
theory gives a uniform bound on the sup norm for G;. Theorem (6.30) in
[6] implies that on M — By (O) the functions G; are uniformly bounded in

y O

C*'* norm, because G; is uniformly bounded on C''® norm on 0B; N

M ,andon &M —-B 3, (0) the function G satisfies the boundary condmon

aaGn = 0. The convergence of G; to G now follows because we have a

uniform upper bound on G and its derivatives on compact subsets of
M — B51 (0). This completes a sketch of the proof of Lemma 5.1.

We show in the Appendix that the Green’s function G, for the confor-
mal Laplacian has the following expansion for |x| small:

Gy(x) = |x|”" + 45 + O"(|x]).

Moreover from the discussion of the above expansion in the Appendix
and elliptic theory, it follows that O"(|x|) = 4,0"(]x|), where O"(|x|)
on the right-hand side does not depend on &. Observe that M is not

conformally equivalent with Si , because p € 9 M; is a nonumbilic point.
The Positive Mass Theorem implies that 4; > 0 (see the Appendix).
We define the test function ¢ as in (4.7), constructed from A where
Py > 20. Let ¢ be a positive constant independent of J. The function
¢ on B 2% N M depends only on the geodesic distance r to 0; it follows

from Gauss’s lemma [V¢|§, = |¢'*. Since h(0) =0 and hs(0) = 0, by
Proposition 2.2 we have

52 [ veldvs [ veldvee [ Infolindx
BponM B n s B

70

5/ |V¢|2dx+cep0.
B, NM;

Using the definition of ¢ we get

/ R¢2 dv < c/ ui dx < cep,,.
B, NM B

20

The same estimate as above is also true if we replace M by M. Thus
(5.3) / R¢2 dv 5/ R¢2 dv + cep,,.
B, nM B, nM;

Note that in the argument of Theorem 4.2, we use the fact that A =0
on OM . For dMj, hy(g) is different from zero on B,;. Since we want
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to apply the estimates of the previous section, we estimate the boundary
terms involving #,(g). On the one hand '

(5.4) / hy(g)i doy(g) = / hy(g) doy(g)
BunaMJ BJnE)MJ

+/ hé(g)uf dogs(g).
Bys~B;NOM,

On B; N 0M; the boundary of M is given by the equation x; = 0.
The fact that (x,, x,, x;) are normal coordinates implies that 4,(0) = 0.
Hence Ah4(x) < c|x| on By. Therefore

(5.5) / hy(g)u’ doy(g) < ced.
B,nOM,

For the second integral on the right-hand side of (5.3) we first observe
that since in normal coordinates the metric g is Euclidean up to the second
order, for |x| small we have

(5.6) hs(&) = hs(9;;) + O(|x]),

where O(|x|) does not depend on J, and #44(g) and h(s(dl.j) denote the
mean curvature of M, with respect to the metric g and the Euclidean
metric respectively. Also since the metric g is euclidean up to the second
order it is easy to check that for |x| small

(5.7) doy(g) = do,y(8,) + o(x"dx,

where 0(|x(2) does not depend on J, and dos(g) and da(,(éij) are the
induced Riemannian measure on 8 M; with respect to the metric g and
the Euclidean metric respectively.

Using (5.5), (5.6), and the fact that /4, is uniformly bounded we get

/ hy(@) day(g)
B,;—B;noOM,

< / (3,082 doy(8,)) + / (x[id? dx
Bys—B;NOM,

B,;NOM;
< / hy (8,082 day(8,;) + ced.
B,s—B;N8M,
Substituting this and (5.5) in (5.4) yields

(5.8) / hy(g)’ doy(g) < / hy(8, 02 day(8,,) + ces.
B,,nOM, /

Bys—B;no M,
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From now on we will denote #,(d;;) by hs and d05(5 ) by da;. We
estimate the integral on the rlght-hand side of (5.8) as

5.9 / hauldo =/ h <———f——> do
(59) B,,—B,N0M, 97e e B,;—B, I\e? +|x)? o

h 2—<——-£ )]d.
+/B -B, J[ua e+ |x|? %

The second integral on the nght-51de of the above equality can be esti-
mated as v

ool (i) o
= c/zzu-aé {(8 +8|le) - (82 + |x£|2 +j:52)] 4

where ¢, in this case, is the uniform bound on the sup norm of 4; and
Js = w5/ . By observing that |f;| <|f] < clxl2 so that

( & ) ( > >< ca|x|4
e+ |x e+ x4+ 77 @+ IxP

the above integral inequality is reduced to

h [uz —_ (———f——)] do, < cedz.
/BZJ—BJ d & 82+|x12 )

The first integral on the right-hand side of (5.9) is

(5.10) h (—i—)da —/26 <—£——>i(/ h, do )ds
' B8, N2+ |x?) ° Js \e?4s2)ds\Jp 0 °)

The definition of the mean curvature and integration by parts yield

(5.11) RCIACHA (azébfa / v,
s A+1VGP ’

On the one hand, since y; is radially symmetric,




THE YAMABE PROBLEM ON MANIFOLDS WITH BOUNDARY 69

Using the symmetries of the circumference and the fact that f = 3~ ,ll.xl.z
+ ¢ x,%, %, + O(1x]*) , where ¥4, = 0, we obtain

/ VS, 1= 0G*).
OB

§

On the other hand, by the definition of f; it is easy to check that |9, f;| <
c|x| and 18,0, f5| < ¢ which implies that the first integral on the right-hand

side of (5.11) has the order of s*. Hence
(5.12) / hydo, = O(s*).
BS

Therefore, using integration by parts we get

28 £ d
fo ()@, rodes) s
&
—(——2_\[ nrad +2/ (/ hyd )
(82+(25)2) s, 2 T @rs) %

An easy calculation and (5.12) imply

20 e d
/5 (;T.:)ds(/ h a’a&)a’s<csé.

Substituting this first in (5.10) and then in (5.9) we get

2 2
/ hot’ doy < ced’.
B,;—B,N3M,

Substituting this in (5.8) yields
(5.13) / hy(g)u’ doy(g) < ceo.
By;NOM;

On the other hand when we estimate the integral on the right-hand side
of (5.2), using integration by parts as in (4.9) we get a nonzero term that
can be estimated as follows:

Ju du
eda / 8a’a +csp
/BMJnB3 2ons ° = Jmy-B0) 83’7 ° o

Substituting the definition of u,, we have
Qu,  &(xy, X, X3) - Mg

20n; (e + |x|* + x2)?
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where 7, is the unit outward normal vector to M s with respect to the
Euclidean metric. A straightforward computation shows that for § < |x| <
24,

1

2

1 2 ! 3
(X15 X5 X3) - 115 = {Z_'lixi'//'*‘f”// (r) + O(]x| )}—-'—,
o 2 V1+IVEP

where 0(|x|3) does not depend on & . Thus

(9
/ ou, da'é
B%,(0)—BX(0) 5'1
< / ( Axiw+ fry'(n + 0(|x|3)) dx
B2,(0)-B2(0) (&7 +]x| )2 Z !

6
X
+ 08/ %‘ﬁ dx
BL(0)-B2(0) (¢° + |x]7)
where we have used the fact (x,;, x,, x;) - #7; < c|x[2 and

1 2 ! 2 [
2 2) —\ =2 T S¢3 33"
&+ |x| e+ x|"+ f; (e” + (x|

Using the Taylor’s expansion for the function f, the symmetries of the
annulus, and the facts that } A, =0 and y is symmetric we obtain

/ Bu
BL(0)—B2(0) e, =
Thus

ou
/ u,~—~do; < 0852+08p(2).
oM;nB, 0N

Using this, (5.2), (5.3), (5.13), arguing as in §4, and then Proposition 2.2
we get
n 2n/(n—2) (n=2)/n + 2
@) <o@)( [ o Pav) T - (- D0t e
22 -3 2
+cAgene p,” + cAgeypy + cepy + ced.
If

(5.14) lim 4; >0,
d—0
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then choosing p, small enough and J so that 26 < p,, and further
choosing ¢ small enough (hence ¢ =~ sg) we get

(n=2)/n
@) <osh( [ oD av)

The following gives a condition under which (5.14) holds.

Lemma 5.2. If OM has a nonumbilic point, then (5.14) holds.

Proof. Let p € 8M be a nonumbilic point. Since nonumbilicity is an
open property, there exists a neighborhood of p, U € M , where every
point is nonumbilic. Let K be a compact subset of U where every point
is nonumbilic. Let y be a smooth nonnegative function with compact
support in M — Bal(O) with y =1 on K. For a tensor V = vy with
compact support in M — Bal(O) we define for § fixed

t 4/(n—2

g =G5/(" )gl.j+tvij on M.
Denote R’ = Ric(g’) and hl.jt =n(g'), and let R’ and k' denote the
scalar curvature of g’ and the mean curvature of dM s Wwith respect to
g'. Let u, denote the solutions of

— t
Ay, — 3f525R'u, =0 on M; — {0},

Ou, n-2
—L+

on, 2
u,(0) = 1.

Such solutions exists for {f| < #, with # depending only on g and v.
In fact, we can write u, = FtG(;1 , where F, is the normalized Green’s
function for the metric g + tG5—4/ (=2, which exists for ¢ small and
depends smoothly on 7. Since at 0 € dM; the second fundamental form
vanishes, in the Appendix we show that for |x| small

(5.15) h'u,=0 ondM;—{0},

Fx)=x/"" +4,+0(x)),
Gs(x) = |x["" + 4, + O'(Ix]),
from which it follows that for |x| small
u,(x) = 1+ (4, — A;)|x|" 2 + O'(Ix|" ™).

Integrating (5.15) with respect to dv’ and using the divergence theorem
we find

1

t t
a"_l(A‘s_At)=_/aM {O}hutda +2(—
-

Ry, dv'.
n=1)Ja—p
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Differentiating the integrals on the right-hand side of the above equation
and evaluating at { =0 we find

d ___/ i(thUt)
MJ

— R'u,dv'
t -0y ~ 0} 4t

t=0 t=0

_ / (Ric(g%), V) + V") dv°,
M

é

where ¢ = —V'V + Vir, V and

L Wudo'| = / 4 ' do'
dt Jar,— (0 =0 Jom,—q0y 4t =0
1 0
== tr (V. V)do,
2 Jom,~10} «{Va¥)

n being the outward normal vector. Here, we have used the fact that
Ry, =0=h, and u, = 1. Assume that xy has compact support in a thin
neighborhood of the boundary set K. Denote also by =, M, the tensor
which coincides on the boundary with the second fundamental form of
the boundary, and assume that it is zero in any other component. Taking
V= X Ty, WE get the term

d ( / t t 1 t t)
5.16) —|[ - hudo + — Ru dv
(5.16) dt oM—{0} 2(n=1) Jor,—r0p  * 1=0
2/ 1=°1? de®.
K
Since M is minimal with respect to the metric go , ||T01| = ||7r0[| . Using
Proposition 1.2 we have
(5.17) ||T0H2 da® = ||Tg“2662(n_3)/(n_2) da.

Since n = 3, the right-hand side of (5.17) does not depend on &. More-
over, on K, ||Tg||2 > 0 because every point is nonumbilic. By Lemma
5.1, the metric gt varies smoothly in ¢ up to any order on the support of
x uniformly in J. Thus, there exists t, small so that 4; — Ato >y with
y > 0 independent of & . Therefore for J small we have

Ay =4, +(4;-4,)27.

This establishes (5.14) because the Sobolev quotient depends smoothly on
t. Then for ¢ small it will be positive, and by the Positive Mass Theorem
A >0.

fy
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The following corollary is a special case of Theorems 3.1, 4.1, 4.2, and
5.1 when M is a bounded domain.

Corollary5.1. Let Q c R" be a bounded domain with smooth boundary
and n > 3. Then Q(Q) < Q(B), where B is the ball, and the equality
holds only if Q is the ball.

Proof. Since because B and Sﬁ are conformally diffeomorphic and
from Proposition 1.1that Q(B) = Q(Sf) . Since Q is flat, the conclusion
of the corollary follows from Theorems 3.1, 4.1, and 5.1.

6. Conformal deformation to constant scalar curvature
and minimal boundary

We now prove our main theorem concerning conformal deformation.

Theorem 6.1. Let (M", g) be a compact Riemannian manifold with
boundary and n > 3. Assume that M" satisfies any of the following three
conditions:

(i) n=3,4, or5,

(i) M has a nonumbilic point on M,

(iil) M is umbilic and either M is locally conformally flat or n > 6
and the Weyl tensor does not vanish identically on M . '

Then there exists a conformally related metric u Ve y >0 on
the closure M of M, of constant scalar curvature on M and zero mean
curvature on OM .

Proof. For n =4, 5, if there exists a nonumbilic point, Theorem 3.1
implies that Q(M) < Q(S:) . If there is not a nonumbilic point, then the
boundary is umbilic. Thus Theorem 4.1 implies Q(M) < Q(Sf_) provided
that M is not conformally equivalent to S, . If n =3, and M" has an
umbilic point, then from Theorem 4.2 it follows that Q(M) < Q(S:) if M
is not conformally equivalent to Sﬁ . If M does not have an umbilic point,
then it has a nonumbilic point. Theorem 5.1 implies that Q(M) < Q(Sf:)
in this case. Thus, if M is not conformally equivalent to Si ,-we have
Q(M) < Q(S}) when n = 3,4, or 5. If M satisfies (ii), Theorems
3.1 and 5.1 show that Q(M) < Q(Si) . If M satisfies (iii), Theorem
4.1 implies that Q(M) < Q(S:) provided that M is not conformally
equivalent to S} . Let a €1, (n+2)/(n—2)], oy =(n+2)/(n—2), and
consider the ratio

_ E(p)
Qa((p) - (J.M |(0‘a+1 dv)%/a+l > (0 € HI(M) >
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where
E(g) = /(|V|+( 21)R¢)dv+ - / ho*da,

and H,(M) is the Sobolev space of functions with L? first derivatives. By
the Sobolev embedding theorem it is elementary to show that there exists,
for any a € (1, o) satisfying smooth functions u, >0, f o uZ’Ll dv=1
and
Q,(u,) =min{Q (¢):9 € H,(M), ¢ #0}.

We denote this value by Q (M) so that an (M) = Q(M) . Moreover, u,
satisfies the Euler-Lagrange equations

{Au 4(n1Ru +Q,(M)u.=0 onM,
(6.1)

8
Yo + n—2~hua =0 on O M.

an
One attempts to take the limit as o T o,. Since we have a uniform
bound on the H; norm of u,, by weak compactness we can find a weakly
convergent sequence {u, 4} . The weak form of (6.1) is

-2

/M (w Vit + ( 21)Ru ¢—Q (M)u ¢) / hu ddo =0

for any ¢ € C*(M). Since H, (M) is compactly contained in L (M)
forany p < 2n/(n—-2) and Lz(BM ), it follows easily that the weak H|
limit u of the sequence u_ satisfies the limiting equation. (Note that
one sees immediately that lima_ﬁao Q. (M) = Q(M).) A regularity result
of Cherrier [4] then implies that # is smooth. One needs only show that
u is nonzero, and this is where the fact Q(M) < Q(S:i) enters. Given
P ec M and p > 0 small, let ¢ be a smooth function on M which is
equal to one in B p(P) and zero outside B, p(P) . Multiplying (6.1) by

¢2 u, and integrating by parts we get
/ ¢2]Vua|2dv < —2/ du Vo -Vu, dv+c/ ¢2u2 dv
M M
+c ¢2u2da+Q M)/ ¢2 ol g

oM
which easily implies, for any &€ > 0,

(l—e)/ [Vou, lzdv
<ce)p /udv+c/ ¢u a’a+Q(M)/¢>2 o,
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where c(¢) depends on ¢ and M. The Sobolev inequality in B, , C
M — 0M for functions in H(; (B;,) holds with the Euclidean Sobolev

constant Q(S”) plus an error term which is of order p2 because the metric
is Euclidean up to the second order. The Sobolev inequality in B, , such

that B, , N oM # &, for functions in H 1(B2 p) , holds with the constant

Q(Sz) plus an error term of order p because the metric is Euclidean up
to the first order. Since

08" = P =D s 5 M=) oy gniain _ g ism

4 4
we have
(n—2)/n
1 — Sn _ 2n/(n—2)d
(1= o@D -~ ep)( [ eul " o)
(6.2) < c(a)p*Z/ u2 dv

+c/ qbu do+Q (M)/ ¢2 et g

Now observe that ¢*u®*' = (¢u_)*ua — 1_ so that

2 atl 2n/(n-2) (n=2)/n (a—1)n/2 2n
/ ¢u dv< (/ (pu, dv) (/ U, dv)
M M
(n=2)/n
< ([ @uyePan)”
M

where we have used Hoélder’s inequality twice, normalized g so that
Volg(M) =1, [y uZ“ dv =1, and used the fact that (a —1)5 <a+1.
Since our theorem is trivial if A is conformally diffeomorphic to S:ﬁ ,
we assume this is not the case, and hence we have Q(M) < Q(S:'L) . In
particular, we have Q (M) < Q(Sf) for o near a;. Then by fixing ¢, p
small enough to absorb the last term on the right-hand side of (6.2) to the

left get
2n/(n-2 (=2)/n 2 2
(/(q&ua) "/("—)dv) gc/ uadv+c/ u. do.
M M oM

Since ¢ is one on B p(P) , we can take a finite covering of M by balls of
radius p and sum these inequalities to obtain

2 2 (n=2)/n 2 2
(/ ua"/("_)dv) gc(/ uadv+/ uado).
M M oM



76 JOSE F. ESCOBAR

Since a+ 1< 2n/(n —2), this implies

lgc(/ uidv+/ uidv).
M oM

Since H, is compactly contained in L2(M ) as well as in L2(8M ), the
same lower bound holds on u and hence u is a nonzero, nonnegative
solution of the Euler-Lagrange equations

_ n-12 (n+2)/(n=2) _
Au —————4(n_l)Rgu+Q(M)u =0 onM,
ou n-2
a«!—Thgu—O on M,

Since u does not vanish, the maximum principle implies that u# > 0 on
M . From the boundary point lemma we have that # >0 on M.
As an immediate consequence of Theorem 6.1 we have the following.
Corollary 6.1. Let Q c R" be a bounded domain with smooth boundary
and n > 3. Then there exists a metric conformal to the euclidean metric
with constant scalar curvature on & and with minimal boundary.

Appendix: The Positive Mass Theorem for manifolds with boundary

Here we give a brief discussion of the Positive Mass Theorem for man-
ifolds with boundary. We first discuss the locally conformally flat case for
an n-dimensional manifold with # > 3. Then we will discuss the three-
and four-dimensional cases.

The situation we cover here is when the asymptotic “end” of the mani-
fold is diffeomorphic to the complement of a ball centered at the origin in
the half n-dimensional Euclidean space. This situation is not covered in
the previous work on the Positive Mass Theorems. We refer the reader to
the work of Lee and Parker [8] for the history on this problem. We show
that the theorem holds for the relevant cases which we need in this paper.

In this Appendix we assume (M", g) is a compact Riemannian man-
ifold with boundary and dimension # > 3, and also that the Sobolev
quotient Q(M) is positive. Let us first consider the case where (M”, g)
is locally conformally flat and the boundary M of M is umbilic. Let
@, be the first eigenfunction for the conformal Laplacian with respect
to the boundary condition as in {2). Lemma 1.1 states that the met-
ric g, = (p;‘/("—z)g satisfies that Rgl > 0 and hgl =0 on OM . Since
(M", g) is locally conformally flat, there exists a locally defined positive
function u such that near 0 € OM the metric g, = u ("_2)g1 = dij.
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The umbilicity of the boundary implies that &M near 0 is either a piece
of sphere or a hyperplane. Since both neighborhoods in consideration are
conformally equivalent through the inversion map f(x) = x|x|‘2 , We can
assume that near 0 the boundary is a hyperplane. Gluing the function
u and the constant function 1 with a function satisfying the Neumann
condition we can assume that the metric g, above is globally defined and
satisfies that in a neighborhood of 0 it is the Euclidean metric and h

on M. So we can take rectangular coordinates (x,,--- , X,) near O
such that the metric is the Euclidean metric and the boundary is x,=0.

In these coordinates the conformal Laplacian is the standard Laplacian,
and the boundary condition is the Neumann condition. Therefore, the
Green’s function has an expansion for x small

(1) Gx)=|x"" + A+ alx),

where a(x) is a harmonic function such that «(0) =0 and §2 =0.

The Positive Mass Theorem implies that 4 > 0. Moreover 4 = 0 if
and only if M is conformally equivalent to (Sf_ , 8)» where g, is the
standard round metric. We claim that this theorem can be reduced to
the analogous theorem for manifolds without boundary due to Schoen-
Yau [11]-[13] or see Lee-Parker [8]. In order to see this, we consider
the double M = M UOM UM of the manifold M, with the standard
metric g. For a general manifold M the metric g is defined near the
boundary as follows: Let 0 € 3M , and x,,--- , x,_, be coordinates at
the boundary. Let y(x,) be a geodesic leaving from (x,,---,x, ;) in
the orthogonal direction to M and parametrized by arc length. Then
(X, ,x,_;,X,) are the so-called Fermi coordinates at 0 € M . In

these coordinates the arc length ds® is written as
2 2
ds” =dx, + g, (x)dx,dx;,
where 1 <i, j<n-1. The metric g is then defined as

{g(xly""xn)’ anO,

~x,...,x =
g( 1 n) g(xl,‘“ ,_xn)’ anO.

It is clear that g is continuous. Moreover,
8.0 = 04001, 8) = (V,0,,0) + (6, ¥, 8)
= (V5,8,> 9)) + (8, V5 > 8,)-

Since —3d, is the outward normal vector and the second fundamental form

is symmetric, we get g, = —2h, ;- Thus if the second fundamental form
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vanishes, the metric g is C!. In this case, since
2 52
——8&(x,x,)=——58&x, —(x,)),
x> 8(x. x,) = axj %,
we have that the metric g is actually C z, Moreover, if the initial metric
g is smooth up to the boundary, then the metric g has Lipschitz second
derivatives, and is C**® in particular.

In our case, the metric for (M g,) near 01is clearly C* . When we con-
sider the Green s function G for the conformal Laplacian on the closed
manifold (M &,), since near 0 the metric is the Euclidean metric 5
then for x small we have
2) G(x) = |xI"™" + A+ @(x),
where @(x) is a harmonic function, such that &(0) =

The metric GY ("_2)§ is an asymptotically flat metric defined on the
manifold M — {0}. . '

Consider the inverted coordinates z' = x'/r*, where r* = xl2 + e
+ x . In these coordinates, using the expansion (2) one checks easily that

el (" 2)~ has the following expansion near infinity:

G = 1+ A"+ Ol (0 T s,

where p = |z| = r~'. Moreover, from the transformation formula (L.2)
we get that the scalar curvature of GHn=2 g is zero. It follows from the
Positive Mass Theorem, [11]-[13], and [8] that A >0 where the equality
holds if and only if (M — {0}, GY""F) is isometric to (R", J,).

To finish this case, observe that the Green’s function G is obtained as

(3) G(x,x,) = %[é(x, x)+Gx, —x,)].

Hence A = A. Therefore A >0 and equality holds if and only if (M —
{0}, G¥""?g) is isometric to (R}, J,,).

When 7n = 4 we study the case where (M * g) is a compact Rieman-
nian manifold with boundary and JM is umbilic. Consider as before
the metric g, = (olg which has the property that R, > 0 and h =0
on OM . Therefore, the umbilicity of the boundary 1mp11es that <9M is
totally geodesic. Take geodesic normal coordinates (x,, -+, x,) near 0
such that M is given by the equation x, = 0. Near 0 we further change
the metric g, by the metric g, = e g, > where f is a homogeneous poly-
nomial of second degree. It was proved in Proposition 2.1 that there exists



THE YAMABE PROBLEM ON MANIFOLDS WITH BOUNDARY 79

f such that the h = 0 in a neighborhood of 0. Gluing the function e
to the function 1 w1th a function satisfying the Neumann boundary con-
dition on M we can assume that the metric g, is globally defined and
satisfies that R;;(0) =0 and }zg2 =0 on M.

Now we want to show that for the metric g, the Green’s function for
the conformal Laplacian has the expansion for x small as

G(x) = |x[2 + A+ 0" (x| log |x|).

Since for the metric g, the boundary is minimal, the boundary condition
for the conformal Laplacian is the Neumann condition. To study the above
expansion, it is enough to consider the expansion for ﬂ'/l\e_’ Green’s function
for the conformal Laplacian on the double manifold (M, g), and note as
before that G is given by formula (3).

Let (x1 TR x4) be normal coordinates at x = 0. It is well known that
in normal coordinates the metric has the following asymptotic expansion;

1 kI 3
(4) 8 = 5;-,- + §Rikzjx x + O(x|").
Using this expansion one proves easily that

5) VE=1- 2R, 0)x'x + O(xP).

Assume that at x =0, R, j(O) = 0. We will show that in normal coordi-
nates, if R, j(O) = (0 the Green’s function for the conformal Laplacian L
has the following asymptotic expansion around 0, for x small:

(6) G(x) = |x| 7" + 4+ O"(x|log |x).

In order to do that, write G = r'2(1 + ), where r = |x|. We want to
study the equation

(7 LG =20,5,,

where L =A . %R g and o3 = Vol(S3) . The Laplacian on radial functions
is given by

2
8) =2 430 W)

& 952 rBr VE Br

Thus
Agr _2036 +(\\//—§ 8r (r ).
(7) then is equivalent to
©) Lo - LRy + B2 2y g,

6 V& or
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From the definition of the Laplacian one has that
(10) A, =A+P,

where P = Ql'i/-ﬂgij 0.+0,((g U_gl d7)0;) and A is the Euclidean Laplacian.
From (8) and (10) 1t follows that the operator P acting on radial func-

/%) 6
tions is Ve 97"

Multiplying by r , writing T = A - 4r0, , and assuming y is contin-
uous, we see that (7) is equivalent to

(11) Dy = Ty + (PP %) = LRI+ [P PO = LRIy +r*P(y)) = 0

We will compute a formal asymptotic solution to (11). Let ¥ = y, +
W, +¥;+y,, with ¥, € &, ; where &, denotes the space of homogeneous
polynomials in x of degree k.

From (5) and the fact that Rl.j( ) = 0 we conclude that /g = 1+
0(|x|3) , SO that
(Vg) @ 2
)= \/_ 5 = o(r ).

Since R, (O) 0, R = O(r) and hence we start by setting y, =y, =0.

Let %, denote the set of smooth functions that vanish to order k& at
0. The operator T is not invertible on P, for k > 2. However, &, =
imT & ker T because T is selfadjoint with respect to Euclidean inner

product
g .
(Z ax , ijxj) = Za,b,
on &%, . To find w, we observe that if we let ¥ = w, + ¥, = 0, we
have DY € %, . Set the right-hand side as b, + %, with b, € ;. We try
Y3 =Py +g;logr, with p,, g, € &, . By direct computation,

-1

T(py+qylogr)=Tp;—4q; + T(g,)logr.

Thus we can solve Ty, + b; = 0 by writing —by =Tpy;+4q,, Tq; =0,
and setting

Wy =Py — 14;logr.
If W=W1+W2+W3a

Dy € &, + &;logr.
Write the right-hand side as b, + %, + % logr . Consider y, = p,+gq,logr
with p,, g, € &, . By direct computation we have

T(p,+q,logr) =T(p,) — 6q, +(Tq,)logr.
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We can solve Ty, + b, = 0 with b, € &, by writing —b, = Tp, +q,,
Tq, =0 and setting y, =p, — 1g,logr.
By=y, +v,+y;+y,,
Dy € &, + & logr.
Therefore ¥ satisfies

27 1 R (r_2

) — 5 )+ L@i(r_2) € r—‘t(%5 + & logr).

V& Or
Now write ¥ = ¢ +%. By (9) and (12) we have L(r >¢) € C*. Elliptic
regularity theory asserts that r_2(p e C**. Since r‘zv = 0"(rlogr), we
have the expansion for .G as in (6).

Now we want to calculate the expansion of the metric G°Z on M — {0}
near infinity on inverted coordinates. Since

(12) L(r

a -2 -2 a
e A g
we have
~f 0 19] -
g<8—27,5—2-7)=p 6u — 20722206, — 20 22,2 B0 22).

Using the expansion (6) for G , we get for z near infinity
g=2(2)=GF2)=0+4p""+0"(p > 1og(p)))’(5,, + O"(p™*)).

The metric g has zero scalar curvature. From the above expansion for
the metric g we easily conclude that

_~ lLa, 37
g,'j - 6,']' € C_r (Moo) s
where ]\700 is a neighborhood of infinity, 7 > 1, and Cl’r" is the weighted

Holder space of C ! functions with weight —7 and Holder exponent «.
(See [8] for a precise definition of Cl;".)

In this case we have that the mass is well defined, and Lemma 9.7 in [8]
shows that in this case m(g) = c(n)/T where c(n) is a positive constant.
Now apply the Positive Mass Theorem 10 1 as in [8] to conclude that
A> 0, and equality holds if and only if M {0}, g) is isometric to R*
with its Euclidean metric. This clearly 1mphes using (3) that 4 > 0 and
equality holds if (Al4 , &) is conformally equivalent to (Si > &) -

Let (M 3, g) be a 3-dimensional compact Riemannian manifold with
boundary, and 0 € 8 M be an umbilic point. We also assume that Q(M) >

0. We change the metric g by the metric g, = (p‘l'/ (= 2)g, where ¢,
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is the first eigenfunction for the conformal Laplacian. Let (x,, x,) be
normal coordinates at 0 on M , and (x,, X,, X;) be Fermi coordinates.
Since AM is minimal and the point 0 € #M is umbilic, we have that
(x;, X, , x;) are normal coordinates at 0.

Now consider the doubling manifold (ﬁ , £). In the coordinates
(%, X,, X;), which are normal at 0, it is well known that the Green’s
function G for the conformal Laplacian has an expansion for x small

(13) G(x)=|x|”" + A+ 0"(|x)).

Observe that the metric g is only Lipschitz continuous. Therefore we will
use the version of the Positive Mass Theorem (Theorem 6.3 in [3]) due to
Bartnik which applies to spin manifolds with weak regularity assumptions
on the metric. We remark that the proof extends easily to spin manifolds
with several asymptotic ends (see [9]). Since a 3-dimensional orientable
manifold admits a spin structure, the above remark allows us to extend the
theorem to nonorientable 3-dimensional manifolds applying the theorem
to one of the ends on the orientable double cover, which has two ends. Now
consider the metric G'% on M — {0} . From the expansion for the Green’s
function, in inverted coordinates z' = r2x’, where r* = xl2 + x% + x§ if
p=|z|= r~', we have near infinity that

82) =682 =(1+4p" + 0" (07N, + 0" (p 7).

Hence it is clear that

g,‘j - 5ij € W—z;q(Moo) ’

where 7 > 1/2, and Wfr’q denotes the weighted Sobolev space of weight
—1 (see [3] for a precise definition). Since the scalar curvature of g is zero,
we apply the Positive Mass Theorem to conclude that m(g) = c(n)/T >
0 where the equality holds if and only if (M — {0}, ) is isometric to R’
with the Euclidean metric. The constant ¢(n) is a normalization constant
which is positive. Since the Green’s function for the conformal Laplacian
on (M, g,) is given by the formula (3), the above result implies that
A > 0 where the equality holds if and only if (M, g,) is conformally
equivalent to (S, g,)-

Finally we would like to remark that if the second fundamental form
vanishes at 0 € M, and (x,, X,, X;) are normal coordinates at 0, such
that n(0) = —aixa , then for |x| small the expansion for the Green’s func-
tion G, for the conformal Laplacian is as in (13), and the Positive Mass
Theorem holds. In order to see this let g, be as before. Multiplying ¢,
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by a positive constant we can assume that ¢, (0) = 1. From the trans-

formation law (1.5) and (1.6) we see that G, = 0,G, - Since at 0 the
1

second fundamental form vanishes with respect to the metric g and the
boundary is minimal with respect to the metric g, , Proposition 1.2 im-
plies that at O the second fundamental form with respect to the metric g,
vanishes. Hence (x,, x,, x;) are normal coordinates at O with respect to
the metric g, , and the theorem holds for (M, g,), because the metric in
Fermi coordinates and in normal coordinates coincides up to second order
near 0. Moreover, the transformation law (1.4) yields that aiqu)l(O) =0.
For any vector fields Y and Z we have

D,Z -D,Z = {Y(NZ + Z(NY - (Y, Z)V 1],

where D' and D are the Riemannian connections with respect to the
metrics g, and g respectively, and e/ = q)‘f/ ("=2)  Setting Z = 5‘3—6; and

Y = % for { = 1, 2 in the above equality and evaluating at 0 we get

2¢,(0) = 0. Thus, Taylor’s theorem implies that ¢ (x) = 1 + 0(|x|2)
for |x| small. Since G, = QJng1 , we have that for |x| small G, has the
expansion as in (13), and the Positive Mass Theorem holds.
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